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ABSTRACT
SELF FORCE ON ACCELERATED PARTICLES
The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Alan Wiseman

The likelihood that gravitational waves from stellar-size black holes spiraling into a
supermassive black hole would be detectable by a space based gravitational wave ob-
servatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI)
problem and black hole perturbation theory (BHP). In this approach, the smaller black
hole is treated as a point particle and its trajectory deviates from a geodesic due to the
interaction with its own field. This interaction is known as the gravitational self-force,
and it includes both a damping force, commonly known as radiation reaction, as well
as a conservative force. The computation of this force is complicated by the fact that
the formal expression for the force due to a point particle diverges, requiring a careful
regularization to find the finite self-force.

This dissertation focuses on the computation of the scalar, electromagnetic and grav-
itational self-force on accelerated particles. We begin with a discussion of the ”MiSa-
TaQuWa” prescription for self-force renormalization [19, 20] along with the refinements
made by Detweiler and Whiting [36], and demonstrate how this prescription is equivalent
to performing an angle average and renormalizing the mass of the particle. With this
background, we shift to a discussion of the “mode-sum renormalization” technique devel-
oped by Barack and Ori [1], who demonstrated that for particles moving along a geodesic
in Schwarzschild spacetime (and later in Kerr spacetime), the regularization parameters
can be described using only the leading and subleading terms (known as the A and B
terms). We extend this to demonstrate that this is true for fields of spins 0, 1, and 2, for
accelerated trajectories in arbitrary spacetimes.

Using these results, we discuss the renormalization of a charged point mass moving
through an electrovac spacetime; extending previous studies to situations in which the
gravitational and electromagnetic contributions are comparable. We renormalize by using
the angle average plus mass renormalization in order to find the contribution from the

coupling of the fields and encounter a striking result: Due to a remarkable cancellation,
il
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the coupling of the fields does not contribute to the renormalization. This means that
the renormalized mass is obtained by subtracting (1) the purely electromagnetic contri-
bution from a point charge moving along an accelerated trajectory and (2) the purely
gravitational contribution of an electrically neutral point mass moving along the same
trajectory. In terms of the mode-sum regularization, the same cancellation implies that
the regularization parameters are merely the sums of their purely electromagnetic and
gravitational values.

Finally, we consider the scalar self-force on a point charge orbiting a Schwarzschild
black-hole following a non-Keplerian circular orbit. We utilize the techniques of Mano,
Suzuki, and Takasugi [2] for generating analytic solutions. With this tool, it is possible
to generate a solution for the field as a series in the Fourier frequency, which allows
researchers to naturally express the solutions in a post Newtonian series (see Shah et.
al. [3]). We make use of a powerful insight by Hikida et. al. [4, 5], which allows us to
perform the renormalization analytically. We investigate the details of this procedure and
illuminate the mechanisms through which it works. We finish by demonstrating the power
of this technique, showing how it is possible to obtain the post Newtonian expressions by

only explicitly computing a handful of ¢ modes.

SR fyl_i.lsl
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Chapter 1

Introduction: Binary Systems and

Self-force

1.1 A Brief Overview of the General Relativistic Two Body

Problem

The study of binary systems in general relativity is a problem of great interest, as it is
one of the simplest astrophysically relevant systems that can produce gravitational waves.
Because of the non-linearity of Einstein’s equations, this problem is not trivially solvable.
The efforts to study these systems have spawned numerous approximation techniques and
numerical tools, each with its own strengths and weaknesses.

This dissertation will focus on black hole perturbation theory (BHP) one of the four
main approaches to studying the general relativistic two body problem. Before discussing
this approach it is useful to consider the other three approaches commonly used in order
to understand how results from BHP fit into the study of binary systems.

The application of the post-Newtonian (pN) approximation to binary systems is widely
used to model many systems of astrophysical interest. In the pN approximation, one
expands the metric and particle trajectory as a series in a small parameter epsilon for
which the ratio v/c of the speed of the particle to the speed of light is of order epsilon.
Therefore, at zeroth order in the series, the system is described by Newtonian physics, and

the higher orders are corrections due to special and general relativity. This approximation
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applies to systems of all mass ratios, but it breaks down in the high-speed and strong-field
regimes!.

Another approach is numerical relativity (NR) which involves using computers to
solve the full, non-linear Einstein equations, and then, using this information, evolve the
system. In one very real sense this approach “truly solves” the system instead of consid-
ering a perturbative series solution, and is thus preferable to the perturbative approaches.
This powerful technique is limited only by the power of our computers and as such will
become progressive stronger as our computational power increases. This approach is com-
putationally very expensive and is not practical for slowly evolving systems (for example,
when the two bodies are far away and moving slowly), or when the mass ratios of the two
bodies is large (many researchers focus on the regime with ratios between 1:1 and 1:10
6]):2

The third approach is the effective one body approximation (EOB), which maps the
dynamics of the two body problem onto an analogous one body problem [8]. This ap-
proach draws on information from post Newtonian approximation (pN) , a study of
radiation-reaction, and the conservative dynamics of the system. To quote Damour, ¢
one needs to make use of several tools: (i) resummation methods, (ii) exploitation of the
flexibility of analytical approaches, (iii) extraction of the non-perturbative information
contained in various numerical simulations, (iv) qualitative understanding of the basic
physical features which determine the waveform.” [9]. This approach has made some out-
standing advances in our understanding of binary systems [8] and is still of great interest
today. One cannot, however, utilize this approach on its own, as it requires information
from both pN approximations as well as from NR (and as we will see BHP can also aid

EOB).

!That is to say that in these regimes the “small” parameters are not very small, and it is necessary
to use more and more corrections in the highly-relativistic regime in order to recover the same accuracy

achieved in the non-relativistic regimes
2 In 2011, Lousto and Zlochower [7] evolved two orbits with the “extreme” mass ratio of 100:1. The

difference in the language used between numerical relativists and that of the self-force community (where
‘extreme’ is typically used to describe mass ratios of 10° and higher) is indicative of the preferred regimes

of operation for these two techniques.
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As mentioned above, this dissertation will focus primarily on black hole perturbation 3

theory. When applied to binary systems, it is assumed that the smaller of the two objects
can be treated as a point particle, whose gravitational field is treated as a perturbation
to the spacetime curvature generated by the larger body. This technique is therefore
strongest when the ratio of the masses is very large, and thus the astrophysical systems
best studied with this technique are extreme mass-ratio inspirals or EMRIs. These sys-
tems typically consist of a super massive black hole (whose mass we will refer to as M
throughout this work) like those predicted to exist at galactic centers and a solar mass

black hole (of mass m), giving the mass ratio ;4 =m/M oc 1075.

N
Post Effective One Body
Newtonian
c Theory
RS
—
| -
(g°]
o
()
i Numerical
Relativity Black Hole
\\ Perturbation Theory
>
Mass Ratio u

Figure 1: A schematic diagram of the relative ranges of applicability of the four theories
used to study binary systems in general relativity. I depict significant overlap between
NR, pN, and BHP, the three independent approximations. Significant portions of this
entire phase space should, in principle be covered by EOB, which requires input from the

other three.

In the gravitational wave community, these systems are of particular interest as objects
of study for a laser interferometer space antenna (LISA) or LISA-like device. While BHP

is ideally suited to study EMRIs, recent results have shown that BHP has uses in other

regimes as well. In 2010, LeTiec et al. [10] demonstrated that BHP can be used to

Ol LA Zyl_i.lbl
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advance our knowledge of post-Newtonian theory, a fact further demonstrated by Shah,
et al. [3] who used BHP to find parameters previously overlooked (and since confirmed
by Bini and Damour [11] and Blanchet et al. [12]). In another effort, LeTiec et al. [13]
used BHP to develop a set of laws of thermodynamics for binary black hole systems,
laws which should be applicable for systems of any mass ratio. This was later shown by
LeTiec et al. [14], where it is shown that the predictions of BHP for the gravitational
binding energy match numerical simulations to a high degree of accuracy for equal mass
binaries. Furthermore, by using the symmetric mass ratio instead of the canonical mass
ratio, results from BHP could be used to help study intermediate mass ratio inspirals
(IMRISs).

Two relatively recent results showed how BHP can both inform and be compared to
EOB. In one comparison by Sarp et al. [15], BHP was able to provide an analytic fit
for the EOB parameter a(u), by making a comparison with Detweiler’s gauge invariant
quantity, h,. In another comparison, [16], Bini et al. used EOB to find the same tidal
effects predicted by Dolan [17] using BHP. Therefore, BHP is already showing its use
both as an informant and as a source for comparison, even for systems where one would
naively expect BHP to be unreliable.

Having discussed the role of BHP in the overall study of binary systems, we now focus

on the details of this method.

1.2 Black Hole Perturbation Theory and Self-Force

As we discussed before, when we apply BHP to the study of binary systems we treat the
smaller black hole as a point particle traveling along a trajectory in the curved spacetime
of the larger black hole, and we solve the system perturbatively in a series in the mass
ratio, 4 = m/M. To zeroth order in this approximation, the particle travels along a
geodesic of the unperturbed background spacetime. The corrections to the particle’s
trajectory are due to the particle interacting with its own field (of order u), and we call
this interaction the self-force. As our ultimate goal is to obtain the actual trajectory of
the black-hole, we wish to develop an expression for this self-force.

Unfortunately, when we try to compute this force, we quickly run into problems. To
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demonstrate these, let us consider the toy problem of evaluating the scalar self-force on
a small, compact body carrying a scalar charge as it orbits a black hole. We will let
the body have a scalar charge density p, a smooth scalar field ¢, with an internal stress
energy tensor Tgﬁ . This body may even be coupled to some other set of fields, described

by TE"B . Our scalar field satisfies the equation
VOV = —dmp, (1.2.1)

and its stress-energy tensor, Tg fis given by

1 1
TSP = o (V%V% — §g°‘5V7q§V7¢> . (1.2.2)

Therefore, the conservation of stress-energy VT = 0 tells us that
Ve (157 + 137 + T3") =0, (1.2.3)

To find the force density exerted on the body by the field, we use this conservation
equation and write

VT + VT’ = =VT3¥ = pveo. (1.2.4)

If we consider the point particle approximation, then we find

1o =qVeo. (1.2.5)

In the point charge limit, both the field ¢ and its derivative diverge on the world line. 3

In 1999 Mino, Sasaki, and Tanaka [19] and Quinn and Wald, [20] developed the
foundations for regularizing and renormalizing the electromagnetic and gravitational self-
force which is today referred to as MiSaTaQuWa renormalization. The following year,
Quinn [18] adapted the scheme for the scalar self-force. We will discuss this axiomatic
procedure in great detail in Chapter 2, but the procedure can be described qualitatively
in a very intuitive way.

First of all, we assume that a particle in flat spacetime that interacts with its own
half-advanced, half-retarded field will feel no force. Second, since spacetime is locally

flat, our point source’s field will look like the field from flat spacetime locally, and it is

3The above description is paraphrasing Quinn’s argument spanning Eqs. (1-5) of [18].
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this field which causes the problems in the naive calculation. So, we rid ourselves of the
flat spacetime half-advanced — half-retarded force, and then perform an angle average to
eliminate any terms that provide a direction dependent force as we approach the particle.
The resulting force is well defined at the particle.

This MiSaTaQuWa technique provides a good basis for understanding the renormal-
ization of the fields, but it is hampered by the angle-average. While this angle-average
provides us with an elegant tool for understanding the method, it is difficult to apply in
practice. This has led to greater refinements of the technique which will be discussed in

greater detail in Chapters 2 and 3.

1.3 Using Toy Systems

Since the overarching goal of this field of study is to generate the gravitational wave
signal from a binary inspiral with a self-force-corrected trajectory, it might seem odd
to study the effects of acceleration on the self-force. Since the problem of astrophysical
significance concerns the inspiral of a binary black hole system, where both bodies move
along geodesics (at zeroth order in the mass ratio), why study the self-force acting on
accelerated charges, and why study the scalar and electromagnetic self-forces at all?

Let us answer the second question first. We work with scalar and electromagnetic
charges as toy models to help us understand the most daunting aspect of self-force work,
namely the renormalization. These toy models both require renormalization very similar
to that used for the gravitational self-force, without the additional problems of gauge
dependencies and metric reconstruction procedures which arise in the gravitational prob-
lem. Indeed, as we will see explicitly in Chapter 2, many of the equations governing the
description of the singularity look almost identical, with the primary exception being the
number of indices required in describing the fields.

Considering accelerated trajectories has many advantages. One reason to consider
accelerated trajectories is that it allows further testing of the renormalization procedures.
Therefore, by considering accelerated motion, it is possible to refine previous knowledge
of the behavior of the fields due to point sources [21-23], by demonstrating what changes

must be made for accelerated motion, and what properties stay the same [24].
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Furthermore, studying accelerated motion may allow us to investigate fundamental
questions that cannot be approached without it. It has recently been suggested that
the self-force might act as a cosmic censor, preventing the overcharging or overspinning
of near extreme black holes [25-28]. To test this, one must consider the self-force on a
charged, massive particle near an extremal black hole. This charge will move along an
accelerated trajectory as the background electromagnetic field acts on it.

A very practical reason for studying the self-force on accelerated motion is that it
opens up many more useful comparisons that previously were not possible. For example,
if there is a charged particle moving along a circular geodesic in Schwarzschild spacetime,
any expression for the field the source produces or the force experienced by the source
should reduce to that of a particle carrying a similar charge moving along a circular
trajectory in flat spacetime under the limit by taking the limit that the mass of the black
hole vanishes.

Unfortunately, any expressions obtained with the assumption of geodesic motion can-
not generate this result, as Kepler’s law links the particle’s speed to the mass of the black
hole. In this case, the results would reduce to a particle moving in flat spacetime along
a straight line at constant velocity, i.e. moving along a geodesic in flat spacetime. By
allowing for accelerated motion, it is possible to make many more comparisons. Without
the constraint of geodesic motion, it is possible to verify analytic results by comparing

the calculated behavior with a much wider variety of simpler scenarios.

1.4 Structure of the Dissertation

This dissertation will draw heavily from the pair of papers by Linz, Friedman, and Wise-
man [24, 29|, and finish with the unpublished work performed with Eric Van Oeveron
and under the supervision of Alan Wiseman.

We begin in Chapter 2, where we discuss the work done in the first half of [24]. This
will include a derivation of the MiSaTaQuWa renormalization, the Detweiler and Whiting
refinements to the renormalization, and Gralla’s angle-average with our generalization.
We finish the chapter with the expressions required for renormalizing the scalar, electro-

magnetic and gravitational self-forces, along with the equations of motion for the point
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particles.

In Chapter 3, we investigate the mode-sum renormalization procedure—the most widely
used and practical procedure used in self-force calculations. In doing so, we present the
primary result from [24] demonstrating that a very important aspect of this technique
known for geodesic motion in black hole spacetimes, in fact generalizes to general motion
in generic smooth spacetimes. Using the results from Chapter 2, we provide the so-
called ‘regularization parameters’ for scalar, electromagnetic, and gravitational self-force
renormalizations. We finish the chapter with a discussion of some of the important
features of this technique and the analogies between the features of the mode-sum and
the corresponding features of the MiSaTaQuWa formulation.

In Chapter 4, we present the results from the second paper in the series, [29]. In this
work, we used the results from [24] (Chapters 2 and 3) to develop the renormalization
scheme for a charged point mass moving through an electrovac spacetime*. Renormalizing
coupled singular fields requires us to non-trivially extend the results for non-coupled
fields and develop the renormalization procedures for the gravitational self-force in non-
vacuum spacetimes. The primary results we display here were also found independently by
Zimmerman and Poisson [30], different techniques. In section 4.2 we use their results for
the scalar field to develop the regularization parameters for renormalization in scalarvac.

In Chapter 5 we will delve into the techniques of MST [2] for generating analytic
solutions to the Teukolsky equation. We use this to develop the retarded solutions for
the scalar field produced by a charged particle orbiting a Schwarzschild black hole along
accelerated, circular trajectories. In doing so, we utilize the insights of Hikida et al. [4, 5]
to separate the retarded solutions into two convenient parts. We finish this chapter by
computing the damping force experienced by the particle.

In Chapter 6, we use the results from Chapter 5 to compute the conservative self-force
on the particle. This is where we make the best use of Hikida’s insight in splitting the

fields, as splitting the fields allows us to renormalize analytically, as we can perform the

4By ‘electrovac spacetime,” we are referring to a spacetime with a background electromagnetic field,
but that is otherwise vacuum. We assume that the background metric g, is a solution to the Einstein

Equations sourced by the background electromagnetic field.
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summation over all £ by using a general ¢ expression for one part of the field. We then 9

discuss how, conversely this technique could be used to determine a pN expansion of
the higher order regularization parameters studied by Heffernan et al. [31] 5. We then

demonstrate how this technique compares with numerical studies.

5Tt is not clear exactly how useful this will be- as the whole purpose of finding the higher order
regularization parameters is to aid the convergence of the renormalized self-force in cases where it is not

possible to sum from ¢ = 0 all the way to co. It might be useful for comparisons between analytic studies
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Chapter 2

The Equations of Motion and

Renormalization

The primary difficulties in self-force calculations all arise due to the presence of divergent
fields which must be renormalized in order to produce a smooth regular field at the
particle which has well defined derivatives from which it is possible to compute the force
experienced by the particle. In this Chapter, we ! will discuss several important advances
in self-force renormalization, re-deriving many of their equations in a language that is
tailored to discussing the Mode Sum Renormalization of the next Chapter.

The trajectory of a small body moving in a curved spacetime deviates from the
geodesic motion of a point particle at linear order in the charge or mass due to the par-
ticle’s interaction with its own field. Derivations of the corrected trajectory use matched
asymptotic expansions and a point-particle limit of a family of finite bodies whose charge,
mass and radius simultaneously shrink to zero. These derivations demonstrate that one
can describe this corrected first-order trajectory by a renormalized self-force. 2

In order to recover this renormalized self-force, it is necessary 1) to subtract from the

retarded field an expression sharing its same singular structure, and 2) take the finite

!This Chapter and the following is based on the work Linz, Friedman, Wiseman [24]. Significant

sections of the text will differ only slightly from the original paper.
2The most recent and rigorous of these are by Gralla, Harte, and Wald [32, 33] (with a formal proof

for an electromagnetic charge), by Pound [34], and by Poisson, Pound and Vega [35], who also review

the history and give a comprehensive bibliography.
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expression resulting from this subtraction and eliminate all direction dependent pieces. 11

These two steps taken together will produce a smooth? field at the particle, referred to
as the renormalized field, the derivatives of which provide the renormalized self-force.
While all of the procedures used to acquire this renormalized self-force are all based on
the MiSaTaQuWa procedure, there are differences to each.

The first step mentioned above, subtracting a field (which we will call the singular
field from now on) with the same singular behavior from the retarded field, is far from
trivial as it involves the subtraction of two divergent quantities. In order to subtract
these two quantities, it is necessary to regulate each. That is to say, it is necessary to
express these fields in some manner that allows us to compute the difference of two finite
quantities, and only then take an appropriate limit to reach the result of the difference
of the two divergent quantities.

In this Chapter, we will focus on the regularization technique used by many
of the works fundamental to understanding renormalization procedures in general
[18, 20, 23, 36]. We will begin by defining the fundamental system of for self-force renor-
malization and derive the local expansion of the scalar field due to a point source in
section. Next, we will explore the axiomatic approach of Quinn [18] (and of Quinn and
Wald [20] for electromagnetism and gravity), that gives the famous MiSaTaQuWa renor-
malization procedure in section 2.3. Then we will discuss an important refinement of this
technique, introduced by Detweiler and Whiting [36]. Following this, we will discuss an
alternative interpretation, championed first by Gralla [23], and the modification to this
scheme introduced in my first paper [24]. We will introduce equations of motion and
renormalization for the electromagnetic and gravitational self-forces. We complete the

Chapter with a discussion of the equations of motion for point particles.

3 As we will discuss in some detail the precise definition of ‘smooth’ here is a bit nebulous. When we
discuss the mode-sum renormalization techniques, we will treat the renormalized self-force as though it
were C*°. The problem arises from the fact that the precise definition of the renormalized field is not

unique, as discussed in section 2.4

www.manaraa.com



2.1 Description of the System 12

Consider a point particle (a scalar charge ¢, electric charge e, or mass m) traveling on
an accelerated trajectory z(7) in a smooth spacetime (M, gn3), where 7 is proper time.
Let x be a field point that lies on the spacelike ¢ = 0 slice and is in a convex normal
neighborhood, C' of z(0). We define € to be the geodesic distance from the particle’s
position at an arbitrary time 7 to x; that is, € is the length of the unique geodesic
from an arbitrary point on the trajectory z(7). After performing the various derivative
operations to get to an expression for the singular field and singular force, we will choose
the arbitrary point to be z(0). In particular, with an eye to our discussion of the mode-
sum schemes in the next Chapter, we will consider ¢ to be the length of the unique

geodesic from z(0) to z (see Fig. 2).

Nt

z(T)

Z (Tadv)

y 2 (Tadv)

= >
G 1=
X
ycx (Tret)

z (Tret)

Figure 2: The particle trajectory z(7). Two null vectors y*(7,e;) and Y, (7aqn) are tangent
to future- and past-directed null geodesics from points along the trajectory to a field point

x. A geodesic from z(0) to x has length e.

We will restrict the discussion to consider only the scalar self-force. Assume that the

scalar field, @, obeys the Klein-Gordon equation for a massless field 1.2.1. And the charge

ol L) fyl_i.lsl
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density p(z) is given by, 13

p(z) = q/d7(54(ac,z(r)). (2.1.1)
We will use RNCs about a point 7 = 0 of the trajectory and, for mode-sum regu-

larization, spherical coordinates (¢, r, 6, ¢) associated with an arbitrary smooth Cartesian

chart. For brevity of notation, assume that t =0 at 7 = 0.

2.2 A Local Expansion of the Field

To solve for the singular structure of these fields, it is expedient to use the Hadamard forms
of the advanced and retarded Green’s functions. Assuming that the events x, 2’ € C, we

write
Gz, a') = Oz, ) [U (e, )8 0z, ) — V(w.a)0(~o(z.a)],  (221)

where V(z,2") and U(z, 2’) are smooth bi-scalar functions of  and 2/, and o(x, z’) is half
the squared length of the geodesic connecting x and z’. The function ©4(x,z’) is unity
when 2’ is in the causal future (past) of the event z for the advanced (retarded) Green’s
function, and vanishes otherwise.

The retarded solution to Eqgs. (1.2.1) and (2.1.1) is given by

et — g / i =g / Gt (z, 2')5M !, 2(7)),
= q/dTGret(I,Z(T)). (2.2.2)

Following Quinn, we split the region of integration into two regions: the part of the
trajectory in the normal neighborhood C' (where the Hadamard form of the Green’s
function is valid) and the rest of the trajectory. We choose the event x to be close enough
to the trajectory that the events z(7,4,) and z(7.¢) both lie in C, and we denote by T
the proper times at which the trajectory intersects the boundary 0C'": The past and future

intersection points are respectively z(7_) and z(T). The retarded field then takes the
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form 14

¥ = g [ OLwaln) e )0 (e, 2(7) — V. ()0l )] e
+ q/T Grdr
— q/T Ué(o) = VO(—0o)]dr + q/_ . G™dr, (2.2.3)

where we have suppressed the arguments of the biscalar functions. Noting that in the
interval [T, 0], o(z,2(7)) = 0 only at T = 7,4, and using dr = ¢~ 'do, with (") = d/dr,

we have,

Tret(w) T
P (z) = ¢ <M> - q/ V(x, z(7))dr + q/ Gz, 2(7))dr. (2.2.4)
o ret - -0
The gradient of ® with respect to z is given by
U Tret T
Vel =aVe K_> ] +qVVaTr —q [ VaVdr+q [ VoG™dr. (2.2.5)
O/ ret T- -
Because V,V (z,2(7)) and V,G"(x, z(7)) are vectors in the tangent space at z for all
values of 7, the integrals are well defined.

Noticing that, for T_ < 7 < 7., G (x, 2(7)) = =V (x, 2(7)), we write

T_—h
VQ(DTEt == qVQ [(g) :| + qvaﬂ-'ret + q }3_}115/ VQGTEth‘ (226)
ret -0

The retarded and advanced solutions to the solutions take the form

U Tret/adv:':h
q)ret/ad'u =q |:—($, Z):| + q lim Gret/adv (x7 Z)dT7 (227)
o ret/adv h=0 Fo0
and
U
vaq)ret/adv _ qva |: (l‘, Z):| + qV(.’E, Z)VaTret/ad’U
o ret/adv
Tret/adv:':h
+¢lim Vo Gt/ (g 2)dr. (2.2.8)
h—0 Foo

Further progress is difficult with out obtaining expansions of the three bi-scalars, U,

V, and o.
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Expanding the Biscalars, U(z, z), V(z, z), and o(z, 2) 15

The quantities U(z, z) and V(x, z) have the local expansions [37]
1 ! /
Ulz,z) =1+ ERa/g/V"‘ o(z,2)VP o (x,2) + O(e%), (2.2.9)

Vi, 2) = —1—12R(z) 1 0(e), (2.2.10)

where V' is defined to be the contravariant derivative at the position of the particle (z),
R, is the Ricci Tensor, and R(z) is the Ricci Scalar.

Now it is necessary to express et /qadv i terms of the coordinates 2%, and the particle’s
4-velocity u®, acceleration a®, and jerk a® := uﬁvgao‘ at 7 = 0. We will write &,et/ad0 =
—(UYa)ret/adv, Where —yq et and —ya, qav are the gradients with respect to z of o(z, 2)

at zZper = Z(Tret) and Zadv = Z(Tadv)a

Ya,ret/adv = — (Vag)ret/adv : (2211)

The contravariant vectors yr, Jady @€ tangent to affinely parameterized null geodesics

from 2(7yet/adv) to x. Solving the geodesic equation iteratively, produces

1 . N - - N
gRaﬂﬁ’Yz;“yet ('TN - Zﬁet) (xy - Zruet) + 0(64)' (2212)

yféet = (wd - Zféet) -
For the advanced term, y%, . replace each subscript “ret” by “adv”. Next, expand z%(7)

about 7 = 0:

. A 1 A
2 (Tret/adw) = 2(0) + 0:2%|__, Tretjado + 5(932“ Tt jaa + O(T7). (2.2.13)

=0

Using the form of the Christoffel symbols in RNC, I'® by = —%Rd(m)gxs, and the index

symmetries of the Riemann tensor gives

a® = uﬁvﬁud|T:0 = 022%|, o, at = uBVBaé‘]Tzo = 0?2, (2.2.14)
whence
& & L s o L s 3 4
2 (tretjadv) = U Trer + 50 Trer + 50 Tt + o(rt)), (2.2.15)

with each coefficient evaluated at 7 = 0. Now we use the relation (gagyayﬁ )retjado = 0 to

find Tyet/qan 10 terms of u® and z®. Writing Tyet/aaw = 71 + 72 + O(7?), with 7, = O(e")
T =— (u(wd =+ \/(77643 + U&ué) ﬂiﬂ;) ) (2.2.16)

SR fyl_i.lsl

yields
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where the 4 corresponds to retarded (4) and advanced (-) solutions and ug is evaluated 16

at 7 = 0. Let
Gop = Jap T UUp (2217)
be the projection operator orthogonal to u, and, with notation motivated by Eq. (2.2.24)

below, write Sy = qdﬁmdxé, where g, is evaluated at 2(0). Then

= (uﬁazﬂ + S‘O) : (2.2.18)

Similarly, )
=0t 2 (2.2.19)

2v/Sy

Finally, substituting Eqgs. (2.2.16), and (2.2.19) into Eq. (2.2.15)provides an expression
for 22, Jadv (and thus y®) entirely in terms of % and of u® and their derivatives at t = 0.
The next step is to expand ¢ about € = 0. To do this, we focus on 62 and pattern the

calculation on that of [21]. Thus, we write

Oret/ado = (WY ) ret/ads = <q€v3ydy5)q~et/adv ' (2.2.20)

Here u® is the four velocity of the particle at the retarded or advanced times (we treat

&

this in a similar manner to the way we treated z;, Jady’

using a similar expansion as in
Eq. (2.2.15)). Since Yret jady 18 @ Ul vector, we can add the term gdﬁydyﬁ = 0. The reason
for this change will soon be clear.

To keep track of the relevant terms in the calculation, we borrow a term from [21],

and generalize it. Define S as

~

S = [qd[;(x& — zd)(xB — ZB) . (2.2.21)

ret/adv

This definition leads to the expression

1 R
dfet/adv = Sret/adv T ng;YBXZL‘aZEBU’YU/\(ZELJTZ) + O(€°). (2.2.22)
Here and in the rest of this section, g, 4 u®, a®, and a® will all be assumed to be evaluated

at 7 = 0. When we expand S about € = 0, we find

S =28y +5 +5+.. (2.2.23)

4Tt is useful to note that in [21] the use of the hat denoted a quantity evaluated at dr = 0, whereas
we use hats to specify that the expression is one found using RNCs. When we need to make a similar

evaluation we will denote these quantities with a tilde.
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where S, = O(¢"*2). Explicitly, we have 17

So = (nap + uaug)a®a?, (2.2.24)
S = U&Ba@x&xéxﬁ, (2.2.25)
and )
5 o
R e D A P (2.2.26)
\/S_O ALY
where the quantities 2(6 and o /3’ 55 in Eq. (2.2.26) are
2 .
1 a usas
2%% = 1548 ((77:,3 + Tusug) — u@uéuﬁui) — %(3%3 + 2usugp) (2.2.27)
and
I SUNE 2( +ugug) (.5 + usus)(a®ug — ag) (2.2.28)
apsss g \lap T Uatlp)\llg5 T U5 S 5 ) e

It is also useful to define
1 ~ O .
re 1= §Vd80 = Va (s + wpus) 2z = (nap + upua) 2. (2.2.29)

We now have the information to write the expansion of the first term in Eq. (2.2.7)
(sometimes called the ‘direct’ term). We use Egs. (2.2.9), (2.2.22), (2.2.23), (2.2.24),
(2.2.25), and (2.2.26) to expand ®"¢*/9% to the first three orders in e:

S S S
SO 250 SO 250 65’0
qRs5 | rorf 4 Soutu®

+ 2(2%u” + uuPuqa?)

12 NN
Tret/adv:':h
+¢ lim Gret/at (. 2)dr 4+ O(€%), (2.2.30)
h—0 TFoo

where 22 = zfx;.

It is instructive to see Eq. (2.2.30) written in terms of the acceleration and jerk. Using
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Egs. (2.2.24)-(2.2.28), we obtain 18

q)ret/adv _ q 1— afyx’?172 1— § a@x;’xQ - gxg(a
\/ qﬂ,;xﬂxﬁ 2%1,;12[‘1"; 4 qﬂﬁxﬂxﬁ 3
qa2 <qd3 (77,?3\ + 7“’7“5\) — uduéu,yuj\)
24 (qﬂl;a:/:‘a:")3/2

2

us — )

PR Al

AT 0P

3/2

_4qu:,a5\(377d3 + Zudué)xdxéaﬁx;\ B qR 5550
24 (qﬂ,;a:ﬂasﬁ)?’/2 6 (guoxha?)
qRy5 | 2%2P 4 2us2P (us2?) + uu (xca, + 2(u@x“7)2)]

_|_

:I:q—aﬁ(a:auﬂ + ufuPusaY)

6
Tret/adv:':h
+q¢ lim Gt (2 2)dr 4+ O(€?).
h—0 Too
(2.2.31)
Noting that Sy = rar®, we write Eq. (2.2.31) as
ret/adv _ 4 asriz’ 1 (e, 2 a\2 ayd
Pret/ = 7—0[1— 52 33 E(r + 6r° (uaz®)? — (uaz®)?)
3 (asriz?\’
8 72
—# [QU@x&aﬂrﬂ (3r* = (ugz?)?) + QR&&ngdxéiﬁusxz
_T2Raé (ré‘ré + 7’2u‘3‘u3)] + % [Rdgré‘uﬁ + 22%(aa — a®ug)
Tret/ad'u:Fh
+qlim Gretlod (1 2)dr 4+ O(€?).
h—0 Too
(2.2.32)

Therefore, using Eq. (2.2.8), we can write the gradient of the retarded and advanced

fields as
v (I)ret/ad'u - Vv <QU(Z‘,Z)> _R(Z)q vaS’O +u
o ret/adv 12 2 S’o
Tret/adv:Fh
+¢V, lim Gt (g 2)dr. (2.2.33)
h— Too
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Writing out the gradient of the scalar field in terms of the S,’s leads to 19

V4 [oretlad] = q[— VaSo _ % (Vagl 35'1V 5'0) 15 52V 45

~3/2 &3/2 5/2 7/2
255/ S 2 g 16 g2
+§S1V@5‘1] +q[_1 (vdsg 35:Va 50>
&5/2 ~3/2 5/2
4 SO/ 2 SO/ 92 S/
1 4/a Ris |VaSo ( 4o | & o
ﬁﬁﬁw@g+ww)—%i—§%%WW+&ww)
0

2 (rﬂ (65 + u’us) + uﬂuﬁVago)

e

_qR(z) Vdsjoiud
12 2/ S,

qR. . uud J it

M—5/2 (4g0££2(5g + 45101')1}@ — 3ZE'9£L'2V@S10)
1257
ret/adv¥h
+¢V4 lim / Greted gz 2)dr 4 O(€?). (2.2.34)
h—0 Foo

Thus, we have reached an expression for the derivative of the retarded and advanced
fields due to an accelerated particle moving through an arbitrary curved spacetime. This
equation will form the basis of our understanding of renormalization, and in the following
sections we will come to understand that this hideous looking equation is in fact much

simpler than its initial appearance.
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2.3 MiSaTaQuWa 20

Some important aspects of Eq. (2.2.34), become more apparent when re-expressed in

terms of a, a*, and r#, VaPret/edv.

V&(Dret/adv = ¢ [_T_d _ 1 (CL@{L’Q + 20@]3;71'@ _ 3(1,3,7‘;7‘%27‘02)

r3 2 r3 7o

3 a@r%mQ(adxz + Qa@:L‘:Y:Ed) 15 (a@rﬁxz)Q Ta
+= T |
4 7o 8 re

a (4 4, A 2 31 2 2 )3
—q [247’5 <7“ ra + 12rfusaiug — 6r° (usa?) " re — 417 (us2”)" ug

2

: 2a0? (usa?)” A
+3 (u@x7)4 rd> a [% rug — rausx’) +

1—1 w2y : 1 wsatasrtre — r? (uadsa® + agusa”
3 r r3 v B @ «7B *7p

Lo [1 0 4o | 5 i, D Ta (o 02 0D
12’“‘ {; (r" (65 + u’ug) + 2ufu"rs) — p (rr” + r*ufu )}
qR _ adulxh ) ) ) R ;
_—ngqﬂ’) (27‘227252 + 2r%a” s — 3x”$2rd) _ ) 122) (%)
‘ny 5 (s g
:I:E [4 (ad — a2ud) + 2Rﬂ5u6 (5;‘ + u“ud) — R(z)ud]
Tret/ad'u:Fh
+q }llir% VoGt ® (g 2)dr 4+ O(eh).
=0 J 200
(2.3.1)

While a cursory glance at Eq. (2.3.1)° is unlikely to provide any illumination, this equation
contains a wealth of information. Let us stop to consider only the field that would exist
in flat spacetime. This would include the first three lines, and the first term of the second
line (the integral term, known as the “tail”, vanishes in flat spacetime because the flat
spacetime Green’s function only has support on the light cones).

The first term is clearly the inverse square law from a coulomb field. The second,
which also diverges, is proportional to the acceleration. The rest of the terms in the first
five lines all share a common feature: they have an odd number of unit normal vectors.

This means that if we consider any one of these terms and take the limit as we approach

5 This is a more general expression than is given in Quinn [18]. Only when the field point x is chosen
to be along a geodesic orthogonal to the trajectory at z(0) (that is, when usz® = 0) does this match

Quinn’s expression.
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the particle from one direction, we will get the negative of the value we would get if we 21

approached it in the opposite way. That is to say that these terms, while not divergent,
do not give a well defined field at the position of the particle.

The second thing to notice from the flat spacetime field is that the 4 term corresponds
to the @ force noted by Dirac. Therefore, any prescription that we make to find the self-
force needs to eliminate all of the divergent or direction dependent terms while leaving
the term that actually produce the self-force.

With this material we can now understand the Quinn (Quinn-Wald) axioms for the
scalar (electric and gravitational) self-force(s) [18] ([20]).

Quinn’s first axiom, the comparison axiom can be stated as follows:

Consider two point particles in two possibly different spacetimes, each
particle having scalar charge ¢q. Suppose that, at points z(0) and Z(0) on
their respective trajectories, the magnitude of the particles’ 4-accelerations
coincide. We may then choose RNC systems about z(0) and about Z(0)

for which the components of the 4-velocities and 4-accelerations coincide:
u =a%,  a®=a (2.3.2)

Let @ and @ be the retarded scalar fields of the particles. With the RNC
systems used to identify neighborhoods of z(0) and Z(0), the difference
between the renormalized scalar forces, fga and fga is given by the limit
as v — 0 of the gradients of the fields averaged over a sphere of geodesic

distance r about z(0).°

Ra& _ fRG& _ 1 bF A
fo" = 1o = qlim(ViD — VD), (2.3.3)

Quinn’s second axiom simply states that the renormalized scalar force vanishes for

the half-advanced + half-retarded field of a uniformly accelerated charge in flat space:

If, for a uniformly accelerated scalar charge in flat space, ® = %((i)"et +

) then fg’o‘ =

6With S, the set of points that lie a geodesic distance 7 from z(0) along a geodesic perpendicular to

the trajectory, the average of a function f is (f), := |ST|_1/ fdS, where |S,| is the area of S,.
s,
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To define the self-force, we assume that the spacetime of the field ® is globally hyper- 22

bolic so that retarded and advanced fields are well defined, and we set ® = ®"¢. With

this restriction, the axioms imply that the self-force is given by
e =g ling(Vd(I)ret — V4d),. (2.3.4)
T

As in this equation, we will henceforth use the RNC identification of normal neighbor-
hoods of the flat and curved spacetimes to regard ® as a field on C.

For ease of comparison, we will rewrite history slightly and introduce some terminology
that only came into usage after Quinn, and was formally defined only later by Detweiler
and Whiting [36]. So far, we have discussed the retarded and advanced forces, fret, fadv
and the renormalized force ff. We will now introduce the concept of a singular force f2
which is the force due to the singular field ®°. The singular field is just the field that
contains the singular structure of the retarded field. The singular field does not have to
be uniquely defines, although as we will see in the next section, there are certainly some

definitions that are more useful than others. For us, we will say that the singular field as

described by Quinn is the half-advanced-half-retarded flat spacetime field, and therefore,

FRE qlg?)(vd(brd—vd@g% (2.3.5)
= qlim(f"* — f5"),, (2.3.6)

where we use the subscript ) to denote that these are the singular quantities effectively
used by Quinn.

This is an elegant procedure, and provided the crucial first step in understanding
how to renormalize the self-force. The angle-average is very useful conceptually”, but for
practical applications it can be quite cumbersome.

For example, in most cases, the only clear-cut way of generating the solutions for
the retarded field is to express them as modes of angular harmonic functions (typically
spherical harmonics or spheroidal harmonic), using a coordinate basis with the origin

at the central singularity of the black hole. The angle average here is an angle average

Tone can think of this angle average as merely saying that the total force felt by the particle is the

sum of all of the forces on it, with the angle average acting to enforce the summation; it adds the force

from above to the force from below, the force from the right to the force from the left, etc.
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about the particle, an angle average that would be difficult to perform in any practical 23

calculation using the angular harmonics.

2.4 Detweiler and Whiting’s Singular and Renormalized Fields

Detweiler and Whiting [36] sought a more practical renormalization routine than that
proposed by MiSaTa@QuWa. Using their method, we seek to define a renormalized field,
¢, that is defined in the normal neighborhood of the particle, and is smooth in the entire
domain, even at the particle. It is this renormalized field which determines the motion
of the particle itself.

To understand the motivation for their definitions, look again at Eq. (2.3.1). Before,
we explained how the half-advanced-half retarded flat spacetime field would include all of
the terms that either diverge or are direction dependent at the particle. If we consider the
curved spacetime fields, we notice that once again, all of the terms in V,¢ that are shared
between the advanced and retarded solutions would fit in this description. As such, it
would be tempting to simply say that the singular field, ¢°, which we must subtract from

the retarded field to generate ¢ would be

Ol = % (67 + ¢°"] (2.4.1)

where the subscript (1) indicates that this is our first guess at the singular field. There is,
however, a flaw to this definition—the singular field represents the behavior of the retarded
solution very close to the particle, and ¢*(91) includes contributions form the tail terms,
which include contributions from the entire history of the particle (in fact both past and
future history because this definition includes both the advanced and retarded solutions).

In order to overcome this objection, a natural second attempt would be to define the

singular field as

11U 11U
=== — = . 2.4.2
¢(2) 2|:d:|ret+2|:é':|adv ( )

This term still does not quite suffice, however, and to understand why, let us return
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to Eq. (2.2.33), reproduced below 24

<qU('x,z)) _ R(z)q VaSo .
g ret/adv

12 25,
Tret/adv:Fh

+q¢V, lim Gretled (g 2)dr.
h—0 TFoo

Va(pret/adv _ Va

The second guess, while it does not include contributions from the entire history of
the particle, it does not include contributions from enough of the history of the particle—
it does not include the effects from the derivatives of the limits of the integral term.

To avoid these issues Detweiler and Whiting defined their singular field as

S % [(M)t + (M>d1 + g "V, 2)dr (2.4.3)

o o Tret
If we take the derivative of this field, then we would recover every term from Eq. (2.3.1)
that is shared between the advanced and retarded fields— that is to say we recover every
term that is either divergent or would produce a direction dependent term to the force.

Therefore, to get the renormalized field ¢¥, we can simply write
PR =D — DY (2.4.4)

and the renormalized self-force is simply given by ff = ¢V, ®%. This means that we have
a method for producing the renormalized self-force that does not include angle-averages
about the particle, giving us a practical renormalization scheme.

Because the Detweiler-Whiting singular field is so central to the progress in self-force
computation, it is worth pausing to enumerate some of the properties of the various fields
defined in Eq. (2.4.4).

The field ®7 is defined only locally, and in this region is a solution to VMV“(IDS = —4mp.
As such, in the limit that the distance € between the field point and the particle’s position
approaches zero, this field mimics the behavior of the retarded field and is dominated by
the Coulomb, €' field. If I take another field ¥ # &9 that also is a solution to the

sourced field equations, then it can also be a singular field if
Va®Py — Vol =0, (2.4.5)

That is to say, that the singular field is not uniquely defined and if I have one singular

field, I can generate another singular field by adding to it a solution to the source-free
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equation which produces no force at the particle’s position. On the other hand, following 25

the prescription given by Detweiler and Whiting in Eq. (2.4.3), then there is no ambiguity.
This distinction is crucial to understanding the application of the angle-average scheme
discussed in the next section as it applies to the electrovac calculation in Chapter 4.
Because of this ambiguity in defining ®°, ®# suffers from the same ambiguity, al-
though, once again, this is not ambiguous at all if one follows the Detweiler and Whiting
prescription. By applying V,V® to Eq. (2.4.4), it is clear that ®% is a solution to the

source-free field equations as

VoVodhy, = VoV (@ — of,)

= —dmp — (—4mwp) = 0. (2.4.6)

While ambiguous definitions are typically to be avoided, this ambiguity is quite useful,
because it means that we have some freedom to in choosing our singular field so as to give
o™ different properties. In particular, we will use this freedom to state that the mode-sum
decomposition of the renormalized field evaluated at the particle falls off faster than any

power of ¢, a trait of C* functions (see next Chapter).

2.4.1 The Interpretation for Gravity

The gravitational self-force can raise a host of very subtle questions. Perhaps the most
important of these is the following: In general relativity, gravity is not considered to be
a force, so, how can there be a gravitational self-force?

I waited to bring this up until now because we need Detweiler and Whiting’s insights
to conquer this question. First, let us consider the scalar self-force. Assume that I
place a swarm of test particles near my scalar charge. Each of these test particles would
experience a force given by the derivative of the retarded field of our point charge. The
point charge itself will experience a force not due to its own retarded field but instead
due to the renormalized field. Therefore, it experiences a very different force than the
test particles nearby would experience.

When we consider gravitational perturbations, the metric perturbation h,s takes the

place of ®. Let us assume that at a given instant, ¢ = 0, the particle is traveling tangent
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to a geodesic of the background spacetime, and once again, consider a nearby test mass. 26

The test mass would move along a geodesic of the total metric g, = ggﬁ +h;€§ (where ggﬂ
is the unperturbed metric). The point mass producing the perturbation however, would
instead move along a geodesic of the spacetime described by the metric gos = ¢° 5+ hfﬁ.

Therefore, the point particle is moving through a different spacetime, and since the
geodesics of this spacetime do not necessarily match those of the background spacetime
(or, for that matter, the metric of the spacetime a nearby particle would experience), it

is said to experience a force, and this force is produced by the particle’s interaction with

its own gravitational field, and so we can describe this as the gravitational self-force.

2.4.2 Gralla’s angle-average prescription

If we return to Eq. (2.3.1), and consider the case when the particle is moving on a geodesic.
In this case, Gralla noticed that one could renormalize purely by angle averaging [23],
and he utilized this to extend the ability to regularize the gravitational self-force to a
wide range of gauges.

If we include the acceleration terms, however, this prescription would miss the terms

proportional to the acceleration, terms which diverge as ¢! in the force, namely the terms

q (asgr® + Qa@x&xd 3%7‘“%27‘&
2 73 7o ‘
If we consider the angle-average of this term, it is clear that they do not vanish, and
yields
q

. 2.4.7
e (2.4.7)

Let us take a step back for a moment and consider what we are doing. The whole goal of
this procedure is to develop the equation of motion for our point particle. If we call (F,)
the force constructed by taking the angle average of the full retarded solution, and any
quantity (@) to be the value of that quantity using Gralla’s renormalization, we would

find,
Ve a((lo)

F,) =m{a,) = F" + Ff -
(Fa) = m{aa) = Fo7 + Ff = ==,

(2.4.8)

where the superscript Q@ is the background quantity. Since the acceleration of the

particle can also be expressed in a perturbative series in the charge, we can consider
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consider bringing the divergent term over to the left hand side, and, using the fact that 27
for the background quantities their angle averaged value is the same as their actual value,

we can write

2
<m + %) (aq) = F9 + FE, (2.4.9)

While the above equation still has a divergent term, this term is recognizable as the renor-
malized mass, a divergent term due to the energy density of the field arising due to our
assumption that the small body is in fact a point particle. As such, we have a physical jus-
tification for removing this divergent term. Therefore, we modify Gralla’s angle-average
prescription for geodesic motion by including also performing a mass renormalization.

Because we already argued that the angle-average is impractical for nearly all serious
calculations, a natural question to ask is ‘why should we even discuss the angle-average?’

Gralla used this angle-average prescription to extend the renormalization techniques
for the gravitational self-force in a Lorentz gauge to a large family of other gauges.
Recently Shah and Pound [38] utilized a variant of these arguments to analyze the force
and metric perturbation in a radiation gauge, one of the gauges not included in Gralla’s
family of regular gauges. So, even as we have tried to eschew angle-average techniques in
our practical calculations, these arguments are still useful as we advance the field.

Also, by using our knowledge of the angle-average technique, we can simply pick out
the elements of the retarded field which cannot contribute to the renormalized field. In-
stead of performing an angle average, we can generate the DW singular field by searching
for all of the terms whose angle-average vanishes, and the terms that contribute to a
mass-renormalization, and define the sum of these terms to be the singular field. It is
this insight that we will use in Chapter 4 to analyze the renormalization techniques in
electrovac.

Therefore, by using either Eq. (2.4.3) or the method of gathering the terms that vanish
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on angle average or contribute to the mass renormalization, we find, 28

. SN2 A
s — 1 _ 15 ] a |3(5 5y
Sy 2937 V&, |8\ S, 25,

1 O PN 1 . A

_ 1 { Rdwgtﬂu‘sx"‘xﬁxex% + q ﬁRdﬁ [Tarﬁ—i—uauﬁSg

\/§0 6_&) \% S’0
1 ~
_EQR<’Z) V So},

_ q)S,L+(I)S,SL+q)S,SSL’ (2410)

Now, before moving on to consider how to use the knowledge from the local fields to
generate a practical, mode-sum renormalization, we will take a slight detour to consider

the singular fields for electromagnetism and gravity.

2.5 Electromagnetic and Gravitational Renormalization

In an effort to distinguish the electromagnetic vector potential from the regularization
parameter A% (from Chapter 4), we use a different font, denoting the vector potential by
A“.

We will see that, in a Lorenz gauge, each Cartesian component of the vector potential
A% of an electric point charge and of the metric perturbation h,s of a point mass has a
short-distance expansion similar to that of the field of a scalar charge. We will use this
similarity of form in the next Chapter to demonstrate how the properties we find for the
mode-sum of the scalar self-force also extend to fields of higher spin.

We again rely on the Hadamard expansion of the Green’s functions as laid out in [35].

2.5.1 Electromagnetic Self-Force
In a Lorenz gauge, the electromagnetic vector potential A% of a point charge e satisfies
VOVsA® — R°,n°% = —Arj®,  V,A% =0, (2.5.1)

with current density

Jj%(x) = eu®(x) /5(4)(x,z(r))dr. (2.5.2)
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The solution to Eq. (2.5.1) has components A* in a global coordinate system given by 29

Ala,LdU/ret('r) = / I:G/:/ ('CE7 x/)]adv/ret jyl (x/) \% _gd4$,7 (253)
where each Green’s function satisfies the equation
VIV,G® i (w,a') = RGPy (,2) = —4mdg,6™ (2, 2'), (2.5.4)

Unprimed and primed indices are tensor indices at x and z’, respectively, and the covariant
derivatives are with respect to x.
The expansion of the Green’s function in the normal neighborhood C' is analogous to

that of the scalar field, having the form [35]
Gy (x,2") = O(z,2') [U% (x,2")0(0) — V% (z,2")0(—0)], (2.5.5)

where the bi-tensors U, (z,2') and V9, (z,2’) have in RNC the local expansions

& / & 1 & & 5,6
and
& 1 d oz

In these expansions, each tensor is evaluated at the point z’.
The same steps we followed for the scalar field now give for each component of A“

essentially the same form as that of the scalar field in Eq. (2.2.7), namely

Fe lim (G g rer AT (2.5.8)

Ay =e
adv/ret heot Jo

’
Uaﬁ, /U/B ] Tad'u/ret:l:h ,
adv/ret

The force has the formal expression
fim = =VaTga = F*js, (2.5.9)

where F,, = V,A, — V,A,, and the expression for the singular part of the force is given

in terms of the singular part of the vector potential by
o = eu’g°7 [V,a5 — Vgad], (2.5.10)

where [ s of the metric and 4-velocity are evaluated at the position of the particle.

Ol LA ‘”LlLI
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Now, we wish to derive the expression for the singular field. Once again, we will rely 30

on the method we described in section 2.4.1: we will identify all of the terms whose angle
average vanishes or that contribute to a mass renormalization term and define their sum
to be the singular field A%,

The only qualitatively new feature that the arises in the direct part of the field is the
presence of the four velocity in the numerator. Consider the explicit expression for the

four velocity at the retarded or advanced times:

L.
Upetfady = U+ @ (T1 4 T2+ ) + 507 (T 4 72 + 0 (2.5.11)
By using Egs. (2.2.18) and (2.2.19), we can rewrite u®, Jady 10 terms of the coordinates

of x as
é 6 &, i &, o 1-@(M AA)pa
Uperfaap = U™ — a"ugae” + |a auu,,—i——2a Qpo +upup) | o

aha”

VS

T s & &
+ {7(61 a5 (quo + vpup) + 2a%queus) — a qﬂg} (2.5.12)

[e%

retfady 11 the form,

Therefore, we can write u

)]55‘1,3:“3:” (3)]5‘?,,7:1:“:5%7 3
+ + O(e?). (2.5.13
vV So vVSo (€)- ( )

Now, if we turn to U in Eq. (2.5.6), and we note that to leading order y* = x®—u®7y,

(0% (6% (6% (6% 14 (2
Upetfado = )P + 1) P, T + (g Py ata” £

we can write

(22 + B

Uy = 8%+ 2 [ms + i (Sp + (uaz™)?)
(e )
+2u7m”uﬂx“} + (wéﬁ A [u‘sul;x” +x5] v/ So
(2.5.14)
Notice, this can also be written in the form
(U lretjaze = () P% + @)P%, " + @ P%,, 7'z"
P, xhg¥ P xHavz”
+ & w7 7 B Sy +O(e8). (2.5.15)

VS V'S

ol LAl Zyl_i.lbl
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Using Eqs. (2.5.12) and (2.5.14), we obtain 31

26
[U“B uﬁ] vetjods u® —a®usx” + {aauﬂag + E(Qﬂfz + U[,,'U/,)):| iating
(u*Ry5 — 2R°‘ u?)
+ 5 658" {67 55 +ulu (qu,,+uuu,,)

+2u:’559uﬂ] wha”

xﬂxﬁ & .’17:7 & .4
+ _SO —a qﬂf, + E 3a (q,m + uﬂuﬁ)aﬁ + 6a u&qﬂﬁ

(2.5.16)

Now, recalling Eq. (2.2.22) we can write the direct piece of the electromagnetic vector

potential,

D,.8,58,..2

U&Bu3 ’LL& [1 - Sl 3»5'% . S(l) Ruud‘m“u et e ]

5 7% | 725, TesE T 2s, 65,

ret/adv

_ad’U/ﬂxﬂ (1 — % > + [zaduﬂaﬁ + d&(qm; + u,&uf/)] zha?
vV SO 250 2\/ SO

(uR.— 2R . yr
i ok 12\/3_0 (39)8 |:57ﬂ56ﬁ+u7u5(qﬂﬁ+uﬂuﬁ)

+2u&5‘§ﬁuﬂ} whx”

xha? & x7 o &
o |t 3a®(quo + ugus)as + 6a%usqus
0

R A (£)
+ (uRepu® — 2R uluP)g oqun ) | £ a5y Fu® 57
ol =2 o) | £ 55 T o

(2.5.17)

where we have decomposed S, into two pieces, Sél), which does not change sign when

switching from retarded to advanced times, and Séi), which does.

In the average of the retarded and advanced fields, the contribution from each term
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in Eq. (2.5.17) preceded by + vanishes, so we can write the singular vector potential as, 32

N u® S, 352 S Rgpegxﬂuﬁxéusﬂf2 a®ugah Sh
e

T 95, 7852 25, 650 VS, 25,
(u*R.5 — 2uP Ré

+ NG (36)8 [5%53& + Zﬂug(qﬂﬁ +ugup) + QZﬂésﬁuﬂ} i
: e 0 & B _ ,a
2a%ugay + CLO‘((]A,Q + 'U/'Uz[,) xtx? 6R* ;u u*R
T [ s u - ] + 5 \/S_o.

2v/Soy 12
(2.5.18)

2.5.2 Gravitational Self-Force

The test-particle limit of the trajectory of a massive particle moving in a curved spacetime
is a geodesic. To consistently compute the self-force on a massive particle whose trajectory
is accelerated in the test-particle limit, one must include whatever additional fields are
responsible for the acceleration. Prior to the works Linz, Friedman, and Wiseman [29]
and Zimmerman and Poisson [30], the study of gravitational self-force was restricted to
vacuum spacetimes. In this section, we find the formal contribution from gravity to the
self-force on a particle in a generic vacuum spacetime, saving the study of non-vacuum
spacetimes until later (see Section 4.3).

We will write the spacetime metric as gog = gag + hag, Where g,s is the total metric,
Jap 1s the background metric, and h,gs is the perturbation. We will restrict our discussion
to background metrics g,5 that satisfy the vacuum Einstein equation. We raise and
lower indices with the background metric g,3 and denote by V,, the covariant derivative
operator of g.g.

With vap := hap— % gaph, the Lorenz gauge condition is V,y*? = 0, and the linearized

Einstein equation has the form

V. VP 4 2R * P10 = —167T°P. (2.5.19)

o

Here, T% is the stress energy tensor of a point particle of mass m, given by
T = mu“uﬁ/(5(4) (2 — 2(7)) dr. (2.5.20)

As before, we write the solution to the field equation (in this case, Eq. (2.5.19)) in
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terms of a Green’s function, 33
P =4 / G (2, 2\ T /=g d*a, (2.5.21)
where G*° (2, 2") satisfies
VuV“Gaﬁ,y,g,(x,x') - QRVO‘JBGA’JW,&, (z,2) = —47rg(a,y,gﬁ)5,54(x,x’). (2.5.22)
As in the spin-0 and spin-1 cases, the Green’s function, G* oy (x,2"), has the form
Gdis(x, ') = O(x, ) [U@is (z,2')0(c) — v&i s (2,2)0(~0)| | (2.5.23)

where the bitensors U*” s and Va’B,y,(;, have, in RNC about z, the expansions [35]

Uaﬁﬁg (z,2) = 6;0‘(5?) - gé(a(&RS)&mﬂm"az“ + O(e%), (2.5.24a)
Vi (ea) = R4 0(0), (2.5.24b)

When we evaluate the perturbation using Eq. (2.5.21), we find

u’ylual UQIB 187 Tadv/“it:th Y]

ol = 4m [—75 F4m lim uw'u’ [Gaﬁ , ,] dr.
adv/ret '8
o h—0% J 4 adv/ret
adv/ret
(2.5.25)
Now, solving the perturbed geodesic equation allows us to write
1
S § §
gR = —m (ga + uau ) (V,@hgé — §V5hgw> uﬁqﬂ. (2526)

Therefore, just as for the scalar charge in Egs. (2.2.7) and (2.2.8), and as for the
electric charge in Egs. (2.5.8) and (2.5.10), we have expressed the metric perturbation in
Eq. (2.5.25) and the expression for the force in Eq. (2.5.26).

Applying the same procedure we used for AZ to Eq. (2.5.24a) and solve for the retarded
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and advanced 7,4, we find 34

1 retjaae _ Auaug | S 38F S8 B Rﬂ,;gg:cﬂu%éuSﬁ
m &b /S 25, ' 852 25, 650

U 50 UpT" S Axha?
pa)Yp 1 T )
g2 (1 - ) + {(aa% + aaug) (g + uaty)

VS 25) VS

u(dRB)é&qu ¢ 56 | isE
+2a(dUB)aﬂU[, — T(é ﬂé 5+ uo ﬂu,;)
S
+8uay [ 1— ——
Sahy?yd )
S—O [(adaﬁ + a(@ulg))ugqﬂ,; — a(@uB)ag(qﬂ,; + uﬂu,g)]
() T, h
U”U/S ret/advT
a2 . rost
QT :|:4hli>Igl+ : u”u [GOCB"Y,‘S/]adv/ret dT.
0 o0

(2.5.27)

Therefore, we can write the singular, trace-reversed, metric perturbation as

1o _ wawy |8 380 5 Rugrtu'stus?
o laB T V& 25, 852 25, oo

U Aaﬁ)quﬁ‘ S Axha? .
_8—(5 Y (1 _ 2 ) + [(ad% + a(au/;))(qw + “ﬂ“ﬁ)

V'So 25 V'So

Uallpest’ o ¢

— 4" Ry 505V S0 (2.5.28)

Therefore, by subtracting the appropriate linear combination of the fields and their
gradients from the retarded or advanced solutions, it is possible to develop a formal

expression for the equations of motion for a particle acted on by its own self-force.

1 1 5 4 R
Rs=0 _ 2 . 2 B T
fa = q {g(ad —a“ug) + éRﬂ&u q, 13l
Tret_h
+ ,lzirr(l) VaG ™ (2(7), 2/ (7)) d7’
— —00

(2.5.29)

or, adopting the convention that f, = ¢?Vz® so that the self-force is actually conserva-

tive, we would simply drop the Ricci scalar term and place a projection operator before




For the electromagnetic and gravitational self-forces, we find, 35

B 2 1 Tret_h ,
ff,s_l — 2 {g (a a2ua) + 3qu 5’& +926 'ruﬁ] 1;%& » Vu® Gyodr’
(2.5.30)
and
11
5}3:2 _ m2 [_?(a/ —a ua) +m (q (q75+u7u ) 4q6 ﬂu'}')
Tret—h 8
. ret o B g1
X h:ll)Iél+ - VIBG’Ytsalﬁlu u dT
(2.5.31)
respectively.
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Chapter 3
Mode Sum Renormalization

3.1 Mode-Sum Definitions

Essentially all explicit calculations of the self-force on particles moving in Kerr or
Schwarzschild geometries have used a mode-sum form of the renormalization introduced
by Barack and Ori [1, 21], with early development and first applications by them, Mino,
Nakano, and Sasaki and Burko [39-41]. Its subsequent development and applications by
a number of researchers are reviewed by Barack [42] and Poisson et al. [35]. To regularize
the mode-sum decomposition of the fields, one writes f5 and f7® as sums of angular
harmonics on a sphere through the particle, replacing the short-distance cutoff p by a

cutoff /,,,, in the ¢, m harmonics, and expressing the renormalized self-force as a limit

ema:c anaw o0
lim (Z frett Z ffz> or, equivalently, as the convergent sum Z( frent 5y,

Lrnax—>00
=0 =0 ) £=0 .
For a point particle with scalar charge, and, in a Lorenz gauge, for an electric charge

and a point mass, f2¢ has the form

00 Dan)

[3F =+A L+ Ba+ ) (3.1.1)
n=1

[2n )

where the parameters A,, B, and the DE™ are all independent of the mode ¢, and

L :=/¢+1/2, and =+ refers to the direction dependent expression as one approaches the
particle from above or below.
A striking feature noticed by Barack and Ori [21, 22] and many other researchers is

that for geodesic motion in both Schwarzschild and Kerr, the D™ terms vanish when
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summed over all /. meaning that an effective singular field could be defined mode by
mode by writing,

fo, = £AaL + B, (3.1.2)

where the fesj;%a, are the modes of the effective singular field. It is, in fact, this effective
singular field (or similar ones) that is actually used in mode-sum computations. We will
return to this point in Chapter 5 when we apply these principles to compute a fully
renormalized self-force.

In the self-force community, it is common to write

co 00 D(()?n)

Da - ﬁ, (313)

(=0 n=1
and say that D, = 0.!

In this Chapter, we will first discuss some properties of the spherical harmonic decom-
position of smooth functions that will motivate our treatment of the singular field. Then
we will introduce the mode-sum formalism and discuss some of the subtleties in how we
apply it to the locally defined singular field and the specialized coordinates we will use.
Then we will proceed along the same logic as the original derivation by Barack and Ori in
Schwarzschild [21] to compute the A, and B, terms for particles moving along arbitrary
trajectories in generic (smooth) background spacetimes. In doing this computation we
will show that the other terms must vanish upon summing over all £, meaning that the D,,
term vanishes. We will continue by discussing how these results generalize to renormaliz-
ing the fields of point electric charges and point masses, giving the explicit values of the
regularization parameters for the electromagnetic and gravitational self-forces. To finish
the Chapter, we will first include the coordinate transformation necessary for finding the
values of the regularization parameters in the original coordinate frame before discussing

a refinement of the definitions for the higher order regularization parameters.

'In fact, the L~2 term is sometimes called the D term, with successively higher powers in L~! taking
on higher letters in the alphabet. We have adapted this notation both help distinguish between the finite
term (with no superscript) and the terms falling off as finite powers of £. This furthermore will ease
our discussion of the higher order parameters later on when we wish to discuss terms of arbitrarily high

power in L1
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3.2 Mode-Sum Formalism 38

In mode-sum regularization one writes the retarded and singular fields as sums of angular
harmonics, using the fact that the individual harmonics of the retarded field and of the
expression for the self-force have finite limits on the particle’s trajectory. Because the
singular part of the retarded field is defined only in a normal neighborhood of the particle,
its individual angular harmonics are defined only after one extends the field to a thick
sphere through a position z(0) of the particle. For now, we will ignore any complications
introduced by the extension itself and deal with those only after conquering the rest of
the mode-sum formalism.

Let (t,7,0, ¢) be spherical coordinates related in the usual way to a smooth Cartesian
chart (t,z', 22, 23) for which the 2-spheres of constant ¢ and r are in the domain of the
chart. We denote by ®° any smooth extension of the singular field of Eq. (2.4.10) to
a thickened 2-sphere on the ¢ = 0 surface through z(0) that includes a finite interval
in r about the radial coordinate ry of z(0). For ® representing either ®"¢ or ®°, each
component of the expression for the self-force along the Cartesian coordinate basis has

angular harmonics £ given by

£ ) = g / AV, Dt 7.0, 6) Vi (0. 6), (3.2.1)

where () denotes the complex conjugate of the quantity @, and Yy, (6, ¢) are spherical

harmonics. 2 We have seen that the renormalized self-force at z(0) is given by

[ = lim ¢V, (@™ —3%). (3.2.2)

@ x—2(0)

2By using spherical harmonics, it may at first appear that we are working in a very specialized class
of spacetimes, namely ones with wave equations whose angular eigenfunctions are spherical harmonics.
While the examples we will draw upon in our discussion will be restricted mostly to Schwarzschild space-
time, a spacetime of this class of spacetimes, our results hold for smooth, globally hyperbolic spacetimes.

Regardless of the background geometry, the spherical harmonics form a complete, orthogonal basis in
the angular coordinates. For example, in studies performed in Kerr spacetime, where the eigenfunctions
are spheroidal harmonics, it is common to express the spheroidal harmonics in terms of spherical har-
monics, so that the retarded field may be written in terms of spherical harmonics as well. If we instead
considered a more generic spacetime geometry where the fields are difficult to write in terms of spherical

harmonics, our results in this section will still be valid, although they might be more difficult to apply.
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To obtain an equivalent mode-sum form of f we first use the fact that, for 7 # ry on the
thickened sphere where ®° is defined, ®"* and ®° are each smooth; second, that their
angular harmonics have finite limits as r — 7’0 (the limits depend whether r approaches
ro from above or below); and finally that V,®" — V.®° is continuous on the entire

thickened sphere, when its value at 7 = rg is taken to be lim, (o) (V@™ — V,07). We

then have
fRq = lim V, (@™ — @) (t = 0, 7,60, ¢o) (3.2.3)
— lim Z o (®7 = &)™ (£ = 0,7) Yo (60, o) (3.2.4)
= Z lim [V (€7 — &5)]™ (£ = 0,7)Yom (60, P0) (3.2.5)
’I‘—>’I‘0

=" | lim (Va@™) ™ (t=0,7) = lim (Vo)™ (t = 0,7) | Yin(6o, 60). (3.26)

Z m 7"—)7”0 ’I"—)T’O

where rg, 0y, and ¢ are the angular coordinates of the particle at time ¢t = 0.

The finite range of the sum over m allows the definitions

frettt =g Z lim V@ (t = 0,7)Yom (0o, o), (3.2.7a)
67‘—)7"0
fSZ:t Z 1 v q)SZm o
=q im. (t =0,7)Yem (00, do). (3.2.7b)
Krﬁro

which would allow us to write Eq. (3.2.6) as

ZfRZ f: fret,[i o f(f,[i) ) (328)
=0

In practice, when we compute the mode-sums and renormalize, we find the mode-
sums of the retarded and singular fields independently. Therefore, in Eq. (3.2.8), the
common practice would have us performing the difference of the sums instead of the sum
of the differences. In the former case, the two sums diverge giving us a poorly defined
quantity, whereas in the latter case the individual ¢ modes are finite and we can perform
the subtraction.

It is possible, at this point, to perform a regulation procedure alluded to at the begin-
ning of the Chapter and move on, but doing so would hide some useful comparisons that

can be made between the mode-sum regularization techniques and the formal expressions
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from the previous Chapter. In order to highlight these similarities and motivate the 40

mode-sum regularization, it is useful to briefly explore a property of spherical harmonic

decompositions.

3.2.1 Large ¢ Behavior of the Harmonic Decomposition of a C"° Function

Claim: Let f be a C* function on a domain D that includes a smoothly embedded 2-
sphere S with spherical coordinates 6, ¢. We define the spherical harmonic decomposition

of f to be:

00 00 V4
F=Y 0= femYem(8,0), (3.2.9)
£=0

=0 =0 m=—¢

where Y7, (0, ¢) are the spherical harmonics and the f;,, are given by

Fom — /0 sin(6)do /0 ) (3.2.10)

We claim that if we let k be an arbitrarily large, positive integer, then

lim (¥ f, =0 (3.2.11)
{—00

on S.
Proof: Let us define the derivative operator V2 to be the covariant Laplacian on
S. We will now define a new function, f*) by applying this operator to our function‘k’

times, where k is a positive integer (so f© = f);
o = (g2 g, (3.2.12)

Since f is C* then f® = @V f is also C*. Now, by extending Eqs. (3.2.9) and
(3.2.10) to f*), we find,

0o V4
f® = Z =33 1Ym0, 9), (3.2.13)
=0 =0 m=—/4
and
T 27
= [ sin@)ds [ do16,0)7,.0(0.0). (3:2.14)
0 0

SR fyl_i.lsl
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Using the definition of f*), Eq. (3.2.14) becomes 4l

= [ sn0)as [ ao((V$6,0)enl6.0). (3:2.15)
Integrating by parts ‘k’ times yields
fin = /0 " sin(6)do /0 dof(0,6)(DV?) V(0. ¢) (3.2.16)
- /O " in(6)d6 /0 " 40 F (0, 6) (U0 + 1)) Vo (6, 6) (3.2.17)
— (4 1) /O " sin(6)do /0 " 40 F (0, 0)V1m(6, 0) (3.2.18)
= (U+1)" fom (3.2.19)

So, since f*) is C>° the sum over its £ and m modes converges, so

oo m=~ oo m=~
FO = 3 =YY M ) fa
=0 m=—¢ £=0 m=—¢
00 m=~{ 0o
= YUV Y fom= U+ D e (3.2.20)
=0 m=— (=0

Therefore, since f*® is C*°, the sum > 72, £(£ + 1) f; converges. Q.E.D.

A second property that is useful to consider, although we will not show it is that,
roughly speaking, functions g on the sphere that diverge as 1/6* near § = 0 have angular
harmonics g¢ for which ZZ’”’” diverges as (¥ . 3 Therefore, the harmonic decomposition
of 1/0* will have a harmonic decomposition of the form Const x ¥~ so that when
summed, the expression falls off as ¢, .

We will use these two insights to motivate our methods of regularizing and renormal-

izing the fields in the following sections.

3.3 Mode-Sum Regularization

Recall that before the brief mathematical interlude, our goal was to rewrite our expression
for the renormalized force given in Eq. (3.2.2) in the form of Eq. (3.2.7b), which is to say
that we wish to make the transformation,

ifor[et,ﬂ ZfSZ — Z fret€ fSE) _ Zfoljb,ﬂ. (331>

=0 =0 =0

3Functions of this kind belong to Sobolev spaces H with s < 0, and the relation between the singular

behavior of functions in H and that of their angular harmonics is described in Appendix B of [43].
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In the local formulation from Chapter 2, we regularized the fields by evaluating the 42

retarded and singular fields at a random point a distance € from z(0), where both fields
are large but finite, and taking the limit as ¢ — 0 of the difference of these fields. Trying
to do the same thing with the fields expressed in terms of spherical harmonics would be
very difficult, perhaps more difficult than simply trying to perform an angle average and
mass renormalization.

From the two properties listed above, though it would make sense to try to use ¢ as
a regulator. In the local expansion of the fields, we argued that the singular behavior of
the retarded field could be determined by the behavior of the retarded field as € became
very small. In this case, it should be clear that the singular behavior of the harmonic
decomposition of the retarded field can be determined by examining the large ¢ behavior
of the field. Or, put another way, the singular behavior of the retarded field uniquely
determines the large  behavior of its angular harmonics.

We can make sense of this by considering the DW decomposition of the retarded field,
Pret = O + ®°. As we stated earlier, we will treat ® as a smooth, C* function of

the field point, so its harmonic decomposition will fall off faster than any power of /.

1 2

The singular field diverges as ¢~* and so the singular force falls off as €%, meaning that
3t < Aul, where A, is independent of /.

Therefore, we introduce the regulator ¢,,,, and write

Zmaz émaa)
fi = lim [Z f;etﬁf—ngf] (3.3.2a)

=0 =0
bmaz
=, lim ; [frett — 54 (3.3.2b)
= [ = 131 (3.3.2¢)
=0

which implies that f&* = fret! — f5¢ Now that we have considered the regularization,

we can renormalize the regularized field.
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3.4 Mode-Sum Renormalization 43

Now that we have demonstrated how to actually perform the subtraction between the two
divergent quantities V,®" — V,®°, all that remains is to actually take this difference.
We will now proceed by assuming that the retarded field is known, either through some
numerical process or through the analytic process given in chapters 5 and 6, and focus
purely on the mode-sum decomposition of the singular field.

For our purposes, we do not even need the full functional decomposition of the singular
field, we just need to know the value of V,®3¢ evaluated at the position of the particle.
Recalling the arguments about the ¢ dependences of the spherical harmonic decomposition
of a field evaluated at a point where the field is divergent, we anticipate that the singular

field will have the form
3t = AuL + B, + Co L™t + O(L7?), (3.4.1)

where A,, B,, and C, constants independent of /. The leading term, A,L, arise sfrom
the 1/e* (Coulomb) behavior of fr¢. The B, term arises from the 1/e behavior of the
mass-renormalization terms and corrections to the coulomb term. A term C,/L would

yield a logarithmic divergence in the sum

gmaz

Z Ca/L — Ca IOg gmafb + O<€’I:11L$>7

=0

because this would correspond to a (nonexistent) log e term in the short-distance expan-
sion of fre it cannot be present. The argument can be made precise:* After subtracting
the leading and subleading terms from the singular field, the remainder is defined and uni-
formly bounded everywhere on the sphere except at a point (the position of the particle),
where it is direction-dependent. Its angular transform is therefore convergent, implying
that no term of the form 1/L can be present. Our calculation in Sec. 3.4.1 below explicitly
verifies that C, = 0.

Finally, terms of order €” in f2 (terms of order L2 or higher, including terms falling

off faster than any power of L) could in principle contribute to D,,

oo

Do = (f3*—A.L+B,). (3.4.2)
=0

4This was pointed out to us by Sam Gralla
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Following [21], we refer to Ay, By, Cy and D, as ‘regularization parameters’.® 44

For a scalar charge undergoing geodesic motion in Schwarzschild spacetimes Barack
and Ori [21] demonstrated that the D, term vanishes. This means that we can truncate

the expansion of the singular field in powers of /=1 and write an effective singular field as
o =+ AL+ B,. (3.4.3)

where L = ¢+ 1/2, and A, and B, are constants independent of /. Other work by
Barack and Ori [44] and Warburton and Barack [45], [46], demonstrated that this form
holds in Kerr spacetime as well. It has also been demonstrated that the electromagnetic
and gravitational regularization parameters also have this convenient form (in a Lorentz
gauge for gravity) [22], [42].

In this Chapter, we will demonstrate the main result from Linz, Friedman, and Wise-
man [24] and demonstrate that we can extend these results to arbitrarily accelerated
trajectories in smooth, globally hyperbolic spacetimes.

Because Egs. (3.2.7) involve sums over all m, the values of frt~ and f5** are in-
variant under a rotation of the (#, ¢) coordinates. To evaluate them, it is convenient to
choose rotated coordinates (that we again denote by 6, ¢) for which the particle is on
the coordinate axis, § = 0 at z(0) (see Fig 3). Using Y;,,(0 = 0,¢) = 0¥ m # 0 and
Egs. (3.2.1) and (3.2.7b), we can write

Fo0E = [VO@S}K = lim %/dQPg(COS(@))vaq}S, (3.4.4)
rorg

Therefore, to calculate the regularization parameters, we will use Eq. (3.4.4), with
% given by Eq. (2.4.10). We will then group the terms as ones that are linear in L,
independent of L, inversely proportional to L and proportional to L=2", and identify
these with the A,, B,, C, and D((fn) terms respectively. We then perform the sum over

all £ of the D™ terms and this will give us the D, term.

°In [24] we wrote this as A, in an effort to dispel the growing confusion between an overall leftover
term and the coefficient of the L™2 term. As the old terminology has stuck, we will revert to this

definition to be in keeping with the self-force community.
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45

Figure 3: The particle is shown at time 7 = ¢ = 0, at a coordinate distance ry from the
origin. We rotate our coordinates by an angle 6, so that the particle is placed at the
north pole. The small region bordered by the dashed line represents the region in which

the singular field is well defined—the normal neighborhood of the particle.

From Eq. (2.4.10), the singular field’s leading order term is O(e™'), and the leading-

order term in its derivative is O(e™2). Recalling Eq. (3.4.4), we write
fS,Z — fL,E + fSL,Z + fSSL,Z (345)

where fLf fSBt and fS55% denote respectively the contributions to f2 at leading, sub-
leading, and sub-subleading order. From Eq. (2.4.10), they are given by the following

expressions, evaluated on the t = 0 surface:

et = Em q / dQ P (cos(6))V P, (3.4.6a)
T 7"0

= g / 40P, (cos(6)) V.05, (3.4.6b)
T 'I"O

fosut = limiq/dQPg(cos(H))Vaq)SSL. (3.4.6¢)
7'—)'!'0

In the remainder of this section, we use Eq. (3.4.6), with ®", ®3F and & °5* given by

large ¢ behavior of f given in Eq. (3.4.3) follows from the
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general character of the short-distance form of ®°, given in Eqs. (3.4.7) below. We then 46

find the explicit forms of A, and B,. Denoting by P%*)(2#) a homogeneous polynomial
of degree k in the coordinates x*, we write the leading, subleading, and sub-subleading
terms of ®° in the form

C
Pr = (3.4.7a)
i

P® (z*)
o3t = W (3.4.7b)
0

Pt = %(;;u)‘ (3.4.7¢)
So

For ®" and ®°%, this form is explicit in Eq. (2.4.10); for ®°°%, terms are grouped with
the common denominator Sg/ 2,

That the mode-sum expression (3.4.3) holds for electromagnetic and gravitational
perturbations will again follow from the fact that each component of the corresponding
singular fields (the singular parts of the perturbed vector potential and metric) satisfies
Eq. (3.4.7).

There is a subtlety that we have been ignoring here. In figure 3, we depicted the
normal neighborhood of the point z(0) by a dashed line, and this region will typically
not extend to the entire surface of the sphere. Unfortunately, the singular field is only
properly defined in this region, so we must seek a way to extend the field from this region
to the entire sphere.

Because the mode-sum involves spherical harmonics associated with a specified coor-
dinate system (¢, 7,0, ¢), we begin by rewriting the short-distance expansion Eq. (2.4.10)
as an expansion in terms of the coordinate distances to the particle. To do so, we de-

fine Cartesian coordinates x* (termed “locally Cartesian angular coordinates” in [21])

associated with these coordinate differences by
=t a'=x=p@)cosp 2°=y=p@)sing, z*=r—r, (3.4.8)

where p(6) = 2sin(f/2). In choosing these coordinates — in particular, choosing p(f)
instead of sin @ — and in subsequently discarding terms of order €2, we need to check that
different choices give the same angular harmonic series up to convergent terms whose

sum vanishes at the particle. We can see that this is the case, because two choices of
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p(0) that differ by terms of order #° and for which the corresponding values of Vp differ 47

by O(#?) give expansions of each component V,®° that differ by a continuous function
that is O(e). The difference in the angular harmonic series of each component V,®° is
therefore a series that converges to zero at the particle. The values of the regularization
parameters A, and B,, regarded as vectors, depend on the original coordinate system
(t,r,0,¢), but not on the locally Cartesian coordinates we use to evaluate them. Their
components, of course, depend on the choice of basis.

Another way of interpreting this is as follows: we are not choosing the Detweiler-
Whiting singular field here, but we are choosing a different field U® such that V,V*U¥* =
Vo Vedret = —4mri(x — 2(7)) and Vo (®° — ¥9) = 0, meaning that this field satisfies the
two conditions required for a singular field.

In the language of mode-sum renormalization, if this field differs from the singular
field by a C* then the large ¢ expansions of the fields will remain unchanged. This
means that A,, B,, and C, will remain unchanged. In fact, for all finite n, this means
that the D((f") terms will be unchanged also. On the other hand, it is possible that by
choosing a different extension, we could introduce a term that falls off faster than any
power of £ that does not vanish when summed over all £. In order to ensure that this is
not the case, we choose p(#) such that it only differs from sin(f) at order 62, so that we
know that as we approach the particle, this term will indeed vanish.

The coordinates z* are related to RNCs 2% by
& &, 1 ap €,V 1 & I Y o €.V, A
% = Jyaat + 5(%36 e xfx” + éaua: (T#, I7 + OIF,) aa¥at + ... (3.4.9)

When we use this relation to replace the RNCs by the coordinates x*, the expansion
Eq. (2.4.10) retains the same form, with So, Sl, and S, replaced by quantities Sy, S1, and
So, where

So = quatx”, (3.4.10)

1
Sl = (a)\g,uz/ + 59#1},)\ + U/eu)\reﬂy> x#xyx)\ = ZC#VAx#IVan (3411)

with all quantities in parentheses evaluated at z(0). We will not use the explicit expression
for S5 and do not give it here because of its length; we need only the fact that it is a

homogeneous polynomial of degree 4 in the coordinates x*.
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Our treatment of Egs. (3.4.6b) in section 3.4.2 and (3.4.6¢) in section 3.4.1 differs from 48
that of Eq. (3.4.6a) in section 3.4.3. In the former cases, we are allowed to take the limit
inside the integral, which simplifies the calculation. In the latter case we cannot do this.
The fact that the limit and integral commute follows from the fact that, after one writes
dQ) = dfd¢sin 0, the integrands in Egs. (3.4.6b) and (3.4.6¢) are bounded functions of
and ¢ and are defined everywhere except at § = 0. We examine these subleading and
sub-subleading terms before evaluating the leading term.

Throughout this section, we have been following the methods of Barack and Ori [21]
exactly. At this point they used properties of the Schwarschild geometry, and we rephrase

the argument in a way that holds for a general background spacetime.

3.4.1 The Sub-Sub-Leading term

The sub-subleading term in the self-force is the easiest to evaluate, and we will see that
it vanishes. A function ®°° of the form (3.4.7¢) has gradient of the form

P ()

si%

Vo 0% = (3.4.12)

where each component P s a homogeneous polynomial of degree 7. Because only
polynomials in the three coordinates x¢, i = 1,...,3 survive when f3°%* is evaluated on

the t = 0 surface, we have

2

I Po(;) i
fSSL,f — lim q_/dQPZ(COS(Q))&

e (3.4.13)

r—ro 20

That a function of the form P®)(x?)/ Sg/ ? is bounded follows immediately from the
definition (3.4.10) of Sy and the fact that the spatial part g;; of g, is positive definite.
As noted above, we can then interchange the order of the limit and integration. To see
that the integral over the sphere at r = 7, vanishes, we use the fact that P(") is odd
under [ : z# — —z#, while Sy is even (see the specific discussion in next section, after

Eq. (3.4.17)). From Eq. (3.4.8) the restriction of I to the ¢t = 0, = 1 sphere is the map

6The result is an immediate consequence of Lebesgue’s dominated convergence theorem (see, for
example, [47], p. 191): Let {F,} be a sequence of integrable functions that converges almost everywhere
to F. If |F| < G, for some integrable function G, then F' is integrable and f Fdp =lim,_, f F,du. For

functions of the type we consider here, a proof can also be found in [21].
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¢ — ¢ + m, implying that the sphere itself and the measure df) are invariant under I. 49

Because the integrand is odd under I and df2 is invariant, the integral vanishes.

3.4.2 The Subleading Term

The subleading term of Eq. (3.4.6b),

2

55 = lim q2_L dQPg(cos(H))Va< o1 ) , (3.4.14)

r—)roi ™ 253/2

is more singular than the sub-subleading term by an additional power of Sé/ ® in its

denominator. It has the form

2 (2n) ¢ i
SLA . q L . Pa (.’E )
T = lim — [ dfd 0P, 0)———= 3.4.15
fa rig:) 2T ¢Sln Z(COS ) Sg+1/2 ) ( )
P (o)
To compute the explicit form of 3¢ and to see that sin HW is bounded, we
0
begin by noting that, restricted to the r = ry,t = 0 sphere, PP and Sy are given by
2n
P (:ci)|T:rO = p(0)*" (Z Ao m SIN™ B cOS ™™ <;5> : (3.4.16)
m=0

where a, ,, is a constant; and

So = Sol,_r, = P(0)* (¢za c08(8)* + qyy sin(9)?) | (3.4.17)

where we have used the fact that, with our rotated 6, ¢ coordinates, g,, = 0. In effect,
this is exactly what Barack and Ori [21] do for Schwarzschild, choosing their coordinates
such that u, = 0, and then relying on the diagonal form of the metric to make ¢,, = 0.
Then, because the eigenvalues of q;7, I, J = 1...2, are positive definite, Sy can be written

as
So = p(0)*qy, (1 + B*cos® ¢) (3.4.18)

where

32 = Loo — v, (3.4.19)

Qyy

From Egs. (3.4.16) and (3.4.18), it follows that 83“/2 has one more power of p(6) than

P and hence that the integrand, sin 6P;(cos ) PS™ S5 ™2 s bounded.

SR fyl_i.lsl
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We can therefore again bring the limit inside the integral in Eq. (3.4.15). Substituting

the expressions (3.4.16) and (3.4.18) for P and S, in Eq. (3.4.15), we have

a 27Tqyyn—1/2

swe __ ¢'L T 2 P(cos(0) o [T (Gam SN ¢ cosT 1 )
= df sin ) ————= do. (3.4.20

The integral over 6 has the value

"o Pycos(0)) [T <in Py(cos(0)) 1
/()d@sm@—p(e) —/0 do 9—2—2(:08(9) A

implying £S5 is independent of ¢:
fSL,Z — B..

The integration over ¢ involves the complete elliptic integrals

(1 + B2 cos? ¢) 21/

(3.4.21)

(3.4.22)

/2 /2
B(w) = /O (1 —wsin®¢)"?dg,  K(w) = /0 (1—wsin®¢)2dg,  (3.4.23)

w:zﬂ—Q.
1+ 52

After a straightforward computation, we find

2 2
B, = T (BPE(w)+BYK(w),
3m(1+ B2)32B4qyy

where
B((XE) = (I+ 52)(2 + 52)AaXXYY —2 [(1 + 262)[\@“‘”96

+(1+ B%)*(1 - 52)Aayyyy] ’
B = (24 36%) Avssse

+(1 + ﬁQ) [(2 - Bz)Aayyyy - 2AaXXYY] )

with the quantities Angse given in terms of (g of Eq. (3.4.11) by

Aaﬁ*y&e = 3C(a,8'y)q56 - 3Cﬁ'y6‘]ae7

and we define the A, xxyy as follows;

Aox s — Aa:m:yy + Aamymy + Aamyym +x < Y.

(3.4.24)

(3.4.25)

(3.4.26a)

(3.4.26b)

(3.4.27)

(3.4.28)
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In summary, we have shown that the angular harmonic decomposition of the sublead- o1

ing term has only a B term, a term independent of ¢, whose explicit form is given by
Eqs. (3.4.25)-(3.4.27).

These parameters agree with those of Barack and Ori for Schwarzschild [21], and also
with Warburton and Barack [45] and [46] in Kerr. (In particular note the equivalence of

our Eq. (3.4.27) with Egs. (B5), (B6) and (B7) of [45]).

3.4.3 Leading Term

Finally, we turn to the leading term ff. From Eq. (3.4.6a) and the relation V.S, =
2¢ap7", we have

L N
fuk = —ﬁ(f%ﬁﬂfz, (3.4.29)

where

- B
B = tim_ [ dQPy(cos(0)) — .
r—rg SO

(3.4.30)

Because we are working on a t = 0 surface, we have FY = 0. To evaluate F¥, we
follow Barack and Ori [21], dividing the r = constant sphere that constitutes the domain
of integration into two parts: the coordinate square S, for which |z| < € and |y| < € (some
€ < m/2); and the rest of the sphere, S*\S.. The domains are chosen to be symmetric
under a rotation by 7 about 6 = 0.

On S%\S,, the integrand is smooth, and we can bring the limit inside the integral,
writing

i i

x x
lim dQPy(cos(0))—= = / dQPy(cos(0)) =
g/ 5\, 532

r—)raE 52\,5E

We immediately see that the contribution to the radial component F vanishes. The
remaining x and y components of the integral vanish because the domain of integration
and the function Sy are invariant under a rotation by m about @ = 0, while z and y change
sign.

The only contribution to Ffz is then from the integral over S.. Because € is arbitrary,
the value of the integral is independent of €, determined only by the singular behavior of

the integrand at § = 0. To evaluate the integral, we change integration variables from
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(0,¢) to (x,y). From Eq. (3.4.8), the Jacobian of the transformation is b2

o6, ¢) _ .
= sin 4, 3.4.31
d(z,y) | )
and we have
Ff = lim dxdyP;(cos 0) x3/2 = lim dif/ dyPy(cos 0) ﬁ/g' (3.4.32)
r—ry JS. SO rory J—e —€ SO

Because P(cos ) differs from its value at 6 = 0 only at O(#?), replacing P, by 1 does not
alter the leading singular behavior of the integrand and should therefore not change the

value of the integral. To verify this, we write
Py(cosf) = 1+ h(f)sin® 6, (3.4.33)
where h is smooth on S.. We then have

~ . 7t 7t . .
Fi¥ = lim drdy—— +/ drdy lim [ hsin?0—— | = (lim I}) + I,
= r—rE Js. 83/2 S. rori 33/2 rori ! 2

where we have used the fact that the function hsin®6 2/ Sg/ ? is bounded to bring the

limit inside the second integral, Ii. Then I: has the form

Ii = / dudy | hsin® 0= | . (3.4.34)
S Sy

Again the vanishing of I is immediate, and the symmetry argument we have now used

twice implies that the remaining components also vanish: That is, from the invariance of
S, and hsin? 6/ SS’/ ? under a 7 rotation, together with the fact that = and y change sign,
we have I3 = I3 = 0.

We are now left with
7
3/2
0

Fi* = lim
r—)rg: Se

dxdy. (3.4.35)

We can already see that this integral is independent of L, because P, has been replaced
by 1. It immediately follows from Eq. (3.4.29) that fZ* is proportional to L, and we have
thus established our central claim, that the singular part of the self-force has the form
giwen in Eq. (3.1.2).

Finally, we evaluate ij to find the explicit form of A,. We begin by showing that

the - and y-components can be expressed in terms of the third spatial component ﬁf.
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From the definition (3.4.10) of Sy, we have b3

1 T xr -
O Si2 e +;3/§r TO)’ (3.4.36)
0 0
and the z-component of Eq. (3.4.35) takes the form
Fet = L lim 0 1 4 Lo (r —ro)| dzdy. (3.4.37)
Qow rort Js, | S G2
Using / dx 8x5()_1/2 = 0, we have
A L / L dudy = LY, (3.4.38)
Qe 7‘—>7‘0 ¢ 0 xT
as claimed. Similarly,
fot = Qo fre. (3.4.39)
Tyy
To evaluate F7¢, we introduce as integration variables
x=—"_y=_" (3.4.40)
T —7To T —To
With e : ¢/(r — o), we have
FyY = lim [ dX / AY [Gea X? 4+ 2er X + ¢4y Y + 2, Y + G0 72/
e—oo [_, e
= 227 (GualyyGer — Qyyor — Toalr) /2. (3.4.41)

Finally, using f% = A,L, together with Egs. (3.4.29), (3.4.38), (3.4.39) and (3.4.41),

we obtain

2 Gar — Q(qugcr/Qxx - QayQy?"/ny (3 4 42)
(qﬂchnyTr - nyQ%r - qa:xQ§r)1/2

It is worth noting that this agrees with the form given in [21] and also has the same

Aa:l: = +q

property that u,A“ = 0.

Thus, as claimed, the regularization parameters for the self force on a point scalar
charge moving along an arbitrary trajectory through a generic spacetime are given by
AoL + B,, with the terms for a logarithmic divergence (C,L™') and a finite remainder
(D,,) both vanishing. We have given the explicit forms of the regularization parameters
in the ‘locally Cartesian angular coordinates,” in Eqs. (3.4.42) and (3.4.25). Their values

stem are given later in this Chapter.

Ol LA ‘”LlLI
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It is important to note that we have recovered the regularization parameters for f3¢, 4

whose values are not (necessarily) trivially related to those for . For now we will
just claim that the parameters for the raised indices, the regularization parameters have
the form, AL + B?%, and postpone the proof to the end of next section, where we can

discuss it in the context of extending the four velocity away from the world-line.

3.5 Regularization Parameters for Electromagnetism and

Gravity

Here we write the explicit regularization parameters for the self-force on a point electric
charge and a point mass (computed in a Lorenz gauge). We directly parallel the approach

taken for the scalar charge.

3.5.1 Electromagnetic Regularization Parameters

Until the final equation of this section, we set the charge e to 1.

We begin by writing Eq. (2.5.18), but we keep only the leading and sub-leading terms
) [udé’lgé + agus (.5 + veug) | a2t
as = & i i . (3.5.1)

V5 S/

We now transform to our curvilinear coordinates, v, = J,2"v;. Expanding about the

position of the particle (which is the origin of both our RNC and our locally Cartesian

angular coordinates), we have

Dot = (Dar”) ) + (05002") y 2° + O(a7)
Oprt = (aaxﬂ)o + ((?ExﬂFea(;)o 2’ 4+ O(x?), (3.5.2)
where the subscript ‘0’ denotes the value of a quantity at the position of the particle at

time t = 0.

Applying this coordinate transformation, we find

8

Uy . Canysel 202
s = 4+ 22 , 3.5.3
Vs s 559
where
Canse = (2usI7 5 — aqts) ¢ye — UaCore- (3.5.4)
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To calculate the regularization parameters for electromagnetism we use Eq. (2.5.10), 55

written as
Frar = eu’g™ [Von5™ — Vaai™] = ug*” [0,A5" — 05n"7] .

We now calculate the value of the individual modes of OA*™ in the limit that the field
point approaches the source (i.e. as € — 0). We then write the regularization parameters

for the force as a linear combination of these.

From Eq. (3.5.3), we have

—u® 8,,5’0 + Aa#ﬁvéexﬂx’yxéme
3 5/2
56/2 SO/

0,AG = , (3.5.5)

where
Aa,uﬂ’y(se = 3<a(u/8fy) qse — 3Cag75que- (356)

In Eq. (3.5.5), the leading order term is simply the four-velocity multiplied by the
leading order term of the scalar field. We can therefore immediately evaluate the mode

decomposition of this term,

—0,,5, . L —0,,5,
A% L = {u“ SSH/QOL = 4% lim Q—/dcos(G)Pg(cos(ﬁ))/dqs [ SS/L/ZO}

Sr—0+ 27

Lu” o xYxr/ Yrx — T
— uaAl(lscalar)L =F u Au e ?2 /q gﬂygy2 /gyy 7 (357)
vV 9yy \/gyy7 + )‘(gyy +12)

where we have used Eq. (3.4.42).

Now, we define

AaMXXYY = Aaﬂmyy + Aaﬂwywy + Aam'yyw tr ey,

(3.5.8)
which we use to write (recalling w = 3%(1 + 5%)71)
B Aauﬁvéexﬁx7x6x€]
1% 5/2
Se/ ,
L A"‘#m&xﬁﬂx‘sxe
= aggroli 7 /dcos(H)Pg(cos(O)) / do 53/2
2 ( . N
_ BE B (w) + BE K (w ) ,
sn( 1 g e B

(3.5.9)
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where we define

B®e = (1+8%)(2+ A xxyy — 2 {(1 +268%) A%

H(1+ BP(1 - g)A°

Hyyyy:| ’

(3.5.10)

and
B(K)’au =(2+ 362)Aap.za:x:c + 1+ 62) [(2 o BQ)Aauyyyy a 2AQMXXYY] ) (3.5.11)

We have cast Egs. (3.5.9), (3.5.10) and (3.5.11), into forms matching those of
Egs. (3.4.25), (3.4.26a), and (3.4.26b) for the scalar case. The sole differences are the

presence of the additional raised index and the additional term in the definition of A 5 s..

We will see similar symmetries between the scalar field and gravity in the next section.
Now we will write down the regularization parameters in terms of A, and B,,,.
FEENE = [l (0,85 — 945,

f&S',EMK = uﬁ [QA[Ba]L + QB[gaﬂ . (3512)
Restoring the factors of the charge e, we find

AP =280 Ay BEY) = 260" Biga). (3.5.13)

3.5.2 Gravitational Regularization Parameters

From Eq. (2.5.28), we can write the singular part of the trace-reversed metric perturbation

as
S 4uduB [QU(aGB)uqu@ + u@uﬁgm P Al el
Tap = N 2372

We write this in terms of the actual metric perturbation, h,, = V. — 1/2g,,7%,

(3.5.14)

and then apply the coordinate transformation to take us from RNCs to our curvilinear

coordinates. Upon doing this, we find,

B+ 2uuP Caﬂweﬁx‘sxﬁ

NI

hep = 29

ol LAl Zyl_i.lbl

, (3.5.15)
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where

Caﬂvée = (8U(aaﬂ)’u7 _ a’ygaﬂ + 4uau(araﬂ)’y) Gse + (ga,B + ZUQUB)C»WSE- (3516)

We now compute fg’,f from Eq. (2.5.26),
a,S ad h(s) 1 h(s) B,

1
= —m (go“S + uo‘u‘s) uPuy <(95h:j5 = E&;h% - F“B7h§5 + Pud[whg]u) )

(3.5.17)

Therefore, we need to find the leading terms in the mode-sum decomposition of the metric
perturbation and its derivative.

We first discuss the mode sum decomposition of the metric perturbation itself. Be-
cause the sub-leading term, is cubic in the coordinates z™u and is O(€°), its contribution
will vanish. This means that the mode-sum decomposition of the metric perturbation

evaluated at the position of the mass at time ¢t = 0, is given by

g%" + 2uuP }

VS
2 f((w)] . (3.5.18)

hgi =2 lim £/dcos(@)Pg(cos(@))/alq5{

Sr—0t 27

af _ poB _ o (saB 4 9yayf
hgy = By =2 (%7 + 2u*u”) L(1+ﬁ2)1/2

We use the subscript, (h) to distinguish Bf‘hﬂ) from the quantity B*? of the electromag-
netism section above.

From Eq. (3.5.15), we have

« a a 19) SO Aaﬁ JeaxVx‘;a:Ex”
s’ = —(g™ + 2uu) T 4 — (3.5.19)
25 S8
where
Aaﬁ#’wea’ = |:3<a/3(;r75) Qec — 3((1’8766 qMO’] . (3520)
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The leading order term has the form o8

4043 [ af 2 B 0”80
o (g u-u ) 253/2
0 4

= _(gouB—i-Zuauﬁ) lim £/dCOS(9)P£(COS(0))/d¢ [(9“50]

Sr—0% 27 253/

— (gaﬁ + 2uau,3)Al(Lscalar)L _ AaﬁuL

L(g®® + 2u®uP) | Gur + uptlr —

v 9yy

Goa+UZ Jyy
\/gyy’NV2 + AMgyy +172)

(guatupus)(gert+uzur) _ guygyT]

(3.5.21)
Now, we define
AaﬁuXXYY _ Aaﬁlwxyy + Aa’uxyxy + Aa;mcyyx 4+ Y, (3.5.22)
which allows us to write, (recalling w = 8%(1 + 3?)7!)
BB — Aaﬁﬂavéexax7x6x€
5/2
g S/ ‘
I Aaﬂ 5 xax'yxzsxe
_ I L p poyde
2 ( - 2
- BB B(w) + B K (w )
3m(1 + B2)3/2B4qy, <) )
(3.5.23)
where we define
B(E)7aﬂu =-2[(1+ 252)Aaﬁumm +(1+ 5271 - ﬁ2)Aaﬁuyyyy]
+(1 4 8*)(2+ ﬂ2)Aaﬁ,u,XXYY7 (3.5.24)
and
B(K)’aﬁu = (1+5°) [(2 - ﬂz)Aaﬁuyyyy - 2AQBHXny] +(2+ 3B2)Aaﬁumm'
(3.5.25)

We can now write the regularization parameters for gravity. From Egs. (3.5.17),
(3.5.18), (3.5.21), and (3.5.23), we see that only the partial derivatives of the metric

perturbation contribute to A‘("G R): allowing us to write,

1
A?GR) = —m (ga5 + uo‘ué) Py (A'yéﬁ — §A1375) . (3526)
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The components BE"G R) are given by o9

a « e 1 h h
Bigry = —m (g 't u u5) uPuy (Bmsﬁ — 53575 + F“(;hBé}ZL — F“ﬁ,nyM;)) ) (3.5.27)

We have obtained the explicit forms of the regularization parameters for all three
spins in Egs. (3.4.42) and (3.4.25) (scalar); (3.5.13) (electromagnetism); and (3.5.26) and
(3.5.27) (gravity). For all three spins, we have given the values in terms of ¢ coefficients,
which represent the numerator of the sub-leading terms of the potential (or perturbing
metric), and A coefficients, which represent the numerator of the sub leading terms of

the derivative of the potential (or perturbing metric).

3.6 Regularization Parameters in the Original Background Co-

ordinates

In Sects. 3.4 and 3.5, the components of the regularization parameters are obtained along
a basis associated with locally Cartesian angular coordinates (LCAC); and the value we
obtain for the vector B, relies on extending the components of g,3 and u® away from the
particle by requiring that their components in the LCAC basis assume the values they
take at the particle. For many applications, it is more useful to evaluate the components
of A, and B, in the original coordinate system, as first done by Barack and Ori [44]
and then later explained more completely in an appendix by Barack [42]. In this section,
we follow the latter treatment and freeze the components of u® and ¢, in the original
t,r, 0, ¢ coordinates.

We define (2%) = (6t = t,0r = r — 19,00 = 0 — 0y, 0 = ¢ — ¢y), so that T# agrees
up to a constant with the original ¢, r6, ¢ coordinates; we continue to denote the locally
Cartesian coordinates by z* = (dt,r,z,y). We denote by W#;’ the components of a
quantity W, evaluated using the coordinate system z*. Note that the quantities (,,» and
A,.., involve partial derivatives of metric components and do not transform as tensors.

From the definitions of Sy, S1, and the derivative of our singular field, (Eqgs. (3.4.10),

(3.4.11), and (2.2.34) respectively), we can write the components of the singular force in
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the original coordinates as 60

_9 % QV:zV 3566(11/_ ZC 5+C5 ql/€~1/e
gy = Kot = o Lol ez o). o)
0 0

We still want to use the LCAC to simplify our integrations, retaining the Z* compo-
nents W;‘T” of each quantity, but expressing them in terms of the LCAC. To do so, we

write

P 60— 2P 4 %cot(eo)(x‘*)? + O
= 0¢ = sin(fy) " (z* — cot(fp)z’z") + O(€°) (3.6.2)

(equivalent to Eq. (A.17) of [42]). Then
i = aja’ + cgvxﬁx“’ +O(e%), (3.6.3)

where ag = 052%[,, and 3, = 030,2%[;. By the arguments laid down before, it is clear
that the higher order terms will give contributions to the self-force that either vanish at
the particle or contribute to an order-unity term that vanishes upon integration over ¢.
Note that, at linear order, the transformation (3.6.3) just replaces each occurrence of z*
by z*/ sin .

The leading term acquires a first order correction:

]E,S',L — _ dpuaKxA + (3(}#1/6m - qm‘jzm) C(L;T-TyxnxaxT (3 6 4)
(qaﬁagaéx”x7)3/2 (cjagagafx"f)f’ﬁ

We take the mode-sum expansion of the force and evaluate these individual modes in
the limit that ¢ — 0. The leading term will now give us the A, term as before, and in
the original coordinates we merely pick up an additional factor of sin fy;

2 Qar Ckz@@é’r/d@@ - Qa¢6¢r/6¢¢ (3 6 5)
(Go0GopGrr — Goods, — Good5.) "%

Aai = Fsinby g

For éa, we evaluate the integral

~ q ~ ~
By, = —P, .- 1", 3.6.6
271' M ( )
where
~ 2w ata%alalxxl a0
o = lim [ dp |22 : (3.6.7)
or=0 Jo (Grrara}zeat)>/?

SR fyl_i.lsl
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and 61

Pagurss = 38asGurs = B (2o + Guva ) + (landior = Qi) 35 (3.6.8)
where ¢ 5 is defined in Eq. (3.6.3), whose only non-vanishing components are co¢¢ =
471 sin(26y) and c¢9¢ = c¢¢9 = —2"1cot(6p).

Notice that this equation is identical to Eq. (58) from [42], with the sole exception
that we have included the acceleration in our (,s,. The limit in Eq. (3.6.7) means that
the integral I**7 vanishes except when the indices only run over the (6, ¢) coordinates.
Adopting the notation from [42], we let lowercase roman indices run over only 6 and
¢. Barack writes down the solutions to these integrals in Eqs. (48-57) [42], which we

reproduce below. First, we define

o = sin®(00)dos/Gpp — 1, B = 2sin(6y)Gog/ oo (3.6.9)

Then, 19 is given by

Sin(00)5_N

(02 + B (da+ 4= F2)P(Q/2)

Jabed — QI K (w) + I,gME(w)] . (3.6.10)

where )
2(042 + 52)1/2

_ (A2 A2\1/2 _
Q=a+2-(a®+ B2, ST (3.6.11)
and N = 0% + 0, + 05 + 05
The ten quantities Ié(N) and IJ(EN) are given by
19 = 4]120° +0%(8 - 35%) — 4o + B(F - 9)]
19 = 16 [&f’ +a?(4—TB%) + afP (B — 4) - BB + 4)] . (36.12)
19 = 83 [90% - 20(5 - 4) + B,
1P = —4B[120° - a%(B - 52) + (32— 125%) + P35 + 9)]
(3.6.13)
19 = —4[8a® - a*(F - 8) — 80 + (35 - 8)] .
19 = 8ldat+a¥(3 4 12) + a(F - 4)(35° — 20) + 28235 — 1),
(3.6.14)

ol LAl Zyl_i.lbl
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9 = [ — 70 + o352 — 8) + B 02
19 = 43 [8a —40® + a2(1532 — 44) + 4a(55% — 8) + F2(35% + 4)] ,
(3.6.15)
19 = —4 40— 40’ + aX(75 - 8) + 12057 - BB - 9)]
I = 16 [4a® + 40" + @*(TB% — 4) + a*(115° — 4) + 20+ 1) B (5 + )|
(3.6.16)

3.6.1 The Regularization Parameters for Electromagnetism and Gravity

First, recall Eq. (3.6.22), reproduced below:

5:1’5 = (5ﬁu"‘ — 5Z‘u6) vﬁAi
s
5:2,5 — (Q5 (q'yé +uu ) 4q5 Buv) Vg%

Since we have shown that only the leading and subleading terms in the singular vector
potential and metric perturbation will give a non-vanishing contribution to the mode-sum
when evaluated at the particle, this allows us to write the expressions for the singular
vector potential and metric perturbation in a very convenient form, (taking the charge

and mass to be unity)

A} = [usa—asu,z” +O(e')] ®°
1 v
1 36 [u&u/; — 2augu,z” + O(el)] 7, (3.6.17)

We transform from the RNC basis to the coordinate basis using Eq. (3.4.9), and plug in
our expression for ®° = S_1/2 - 51(253/2) + O(€'), we find that the singular force for

spin s = 0, 1,2 can be written as

~ o~y Ds SV Y 50
qor® Pauu’yém rxr'r

f5 = (=1)°(g.)? [— e + 7 —i—O(eO)] : (3.6.18)

where ¢, is ¢, e, m for s = 0, 1, 2 respectively, and Py s 18 given by

P s = (85008 +32(1 = 8,0)) (Pﬁwg + 82500005 + sqﬁwakaﬂaggquw), (3.6.19)

ol L) fyl_i.lsl
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where Pg,s is defined in Eq. (3.6.8). Thus, we can write the regularization parameters

for spins 0,1, and 2:

QQT - QQGQGT/QVQG - 6a¢6¢r/6¢¢
(G00GgpGrr — Ao, — Qo0 05,)"*

As L = Fsin(fp)g(—1)° (3.6.20)

and

2
B = (—1)pLps s (3.6.21)

«a o Ay
where T#/7° is given in Eq. (3.6.7).
Egs. (3.6.20) and (3.6.21) simplify exactly to Eqgs. (39-44) given in [42], when we take

the geodesic limit, and specialize to a Kerr geometry.

3.6.2 Extending quantities away from the world line

The expressions for the self-force in an electromagnetic or gravitational context depend on
how one extends g®?[2(0)] and u®[2(0)] to a neighborhood of the particle (and there is even
this ambiguity in how one defines the scalar self-force with raised indices). If we return
to the definition of the scalar, electromagnetic, or gravitational self-force, (Eqgs. (3.2.2),

(2.5.10) or (2.5.26), then we can rewrite them as

fs=0,S,,u — kuuqu)sing:g,uuqu)sing

Fo=LSu kuaﬂvﬁAg — ((WBU‘I — (Wo‘uﬁ) VﬁAg
Bu (6 Yu®) — 4a0Hq By
s= q ¢ Fuu 4q e
Fo=25m = kuﬁwsvﬁfy% = ( ( 4> )Vﬁ’Y%-

(3.6.22)

In particular, the quantities k# are only properly defined on the trajectory of the particle
for s = 1,2, and we are allowed a choice in how we extend k* away from the world line.
One popular way is to use the ‘fixed extension’ [42], in which one defines k*(z # z(0)) =
kt-(x = 2(0)), and is the one we use in this paper, but other choices are available [22].
We now show that as long as k* is a smooth function in x then the regularization
parameters retain the form A,L + B,.

Since each component of A2 and 55 has the same algebraic form as ®°, we will

consider finding the regularization parameters for f*=%#. Denote by k{”, 0,kL”, and
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050,k{"” the values of k*” and its derivatives at z(0). For an extension k*”[x] of k*[z(0)] 64

the departure of k*V,®° from ki"V,®° is given by

K'Y — k(Y )V,@° = 270 9oV, %"
0 k
1
+ (ﬁawkg”quﬁﬂ - §ﬁxﬁawa§wvyc1>“) + O(e).
(3.6.23)

The first term on the right has the form P®(z#)S; 52 and it thus gives a correction

to the B term. The term in parentheses on the right is order unity and has the form
P(7)(x“)56 7/ 2; its contribution to the f%5* given by its contribution to the integral on
the right side of Eq. (3.4.13) therefore vanishes. Because the remaining part of the right
side of (3.6.23) is O(e), its contribution to the f? also vanishes.

Therefore, we have demonstrated our claim in Eq. (3.4.3). In doing so, we have shown
that to regularize the fields themselves, one needs only subtract of a ‘B’ term from the

mode-sum of the retarded field, which is to say, for a field ¥, ¥** = B_.

3.7 Discussion

By moving into the basis of spherical harmonics and analyzing quantities mode by mode,
it can be difficult to connect the results we find to the physics we are trying to model, so
it is useful to gain an appreciation for the similarities in the mode-sum prescription and
the MiSaTaQuWa and Detweiler and Whiting prescriptions.

Our key tool for making these comparisons is the insight we already mentioned, namely
that the singular behavior of the fields is uniquely determined by the high ¢ behavior of
the harmonic modes. In Chapter 2, we used the idea that the singular nature of the fields
is uniquely determined by the small € behavior of the fields.

When we regularized in Chapter 2, we evaluated the fields at a small, but finite
distance € away from z(0). This, then, is identical to truncating our expression in the
harmonics by evaluating only to a maximum ¢ mode, ¢ = ¢,,,,. Then to renormalize, we
take the limit as € = 0 or as £,,,q, — 00.

Surprisingly, we can push these analogies even further, and by doing so we can gain an

appreciation for the practical difficulties that still remain after performing the mode-sum
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renormalization. Recall in Chapter 2, where we discussed the difficulties arising from
the angle-average demanded by the MiSaTaQuWa prescription. In this prescription,
we subtracted away the flat spacetime field and performed the angle-average to get rid
of the finite but direction-dependent terms from the sub-subleading terms. This is an
elegant way of presenting the procedure, although the angle-average itself is frequently
impractical (perhaps prohibitively so) to implement.

By pushing this analogy further, we can understand the origin of the remaining pracit-
tcal difficulties in mode-sum renormalization. In the mode-sum scheme, we have just
demonstrated that the renormalization can be performed by merely subtracting the A,

and B, terms. Therefore, it would be tempting to say that

fcjj,f _ fret,€ _ (:]:AQL + Ba) , (371)

«

and, indeed, if we make this definition and then perform the sum over all modes f& =
Soco fEL we would indeed find the renormalized force.

On the other hand, earlier we stated that we would treat the field ®% as a C* function,
which means that its £ modes should fall off faster than any power of ¢, so we should be
able to get a very accurate expression by simply keeping the first handful of modes. But
when we consider results from numerical and analytic work, it is clear that the modes
defined in Eq. (3.7.1) fall off only as £72.

This would seem to be a contradiction. After all, we computed the regularization
parameters by taking the mode-sum decomposition of the full Detweiler-Whiting singu-
lar field, ®°, and when we computed these modes we found that the only terms that
arise include one term linear in ¢ and one term independent of ¢ (the A, and B, terms
respectively).

To resolve this apparent contradiction, let us approach this from the other direction.
By defining the modes of the singular force to be +A,L + B,, we are looking at only
the leading and subleading contributions in ¢. In fact, we demonstrated that these terms
arise by computing only the contributions from the leading and sub-leading terms in the
small € expansion, which come from the flat spacetime singular field only.

Therefore, when we subtract the A, and B, terms, we are in fact following the orig-

inal MiSaTaQuWa prescription, and not making use of the insights from Detweiler and
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Whiting. The practical problem, as we have stated on multiple occasions, with the MiS-
aTaQuWa formulation is that we have to perform the angle-average. The difficulties
associated with this angle-average translate over to the mode-sum calculations in the
form of the slow convergence of the sum over /.

When we take the mode-sum decomposition of V,®°, and write
L
54— / AP, (cos(6))V (BF + B + &5 1 ), (3.7.2)
27

and we truncate the expression after the sub-subleading order, we include only those
terms that do not vanish when ¢ — 0. But, if we only keep the terms that do not
vanish as € — 0, this implies we are keeping the terms that do not vanish only as we
let {0 — 00. The work we have done up to this point ensures that the sum over /,
from ¢ = 0 to oo of any of the higher order terms vanishes, but it does not give us any
information on the behavior of the individual modes of these terms.

However, from our general arguments, one would expect that V@55t falls off as
L72, and that each successive mode will fall off as successively higher powers in L~!.
This has been confirmed by Heffernan et al. [31], who has computed the next handful
of regularization parameters in Schwarzschild and Kerr. We will not review her results
in any detail here, but only remark that by following the same arguments we used to
demonstrate that the D, term vanishes, one can similarly show that the L=®"*1) terms
will vanish, which is what allows us to write Eq. (3.1.3), which says that

Dan)
Do = Z Z [2n -’

/=0 n=1

Because we know that these terms must actually vanish when summed from ¢ = 0 to
¢ = 0o, we can actually rewrite this definition in a more appropriate form. For example,
if we were to subtract a handful of these D" terms, and consider the sum over ¢, we
would find that the sum converges much more quickly, but it would converge to the wrong
answer. To understand this, consider the fact that

> Li = (22" —1)¢(2n) # 0, (3.7.3)
=0
where ((z) is the Riemann Zeta function. Therefore subtracting just the higher order

regularization parameters would introduce a systematic error in the calculation of the
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self-force. In practice, this can be easily remedied by simply computing the value of the
sum of the higher order terms from ¢ = 0 to ¢ = ¢,,,. and subtracting away this value so
as to get the correct self-force.

We will slightly alter the definition of the D, term, by changing it so that each

individual expression actually will vanish when summed over all /. We will use

4nD2n
D pu—
“ ZZH“ (20 + 14 2k)(20 + 1 — 2k)]

/=0 n=1

n 2”)

where we define {k} := [(20+ 1+ 2k)(2¢+ 1 —2k)].” This will not change the value of the
D,, term-it still vanishes, but by writing it in this form the sum over each of the D"
term manifestly vanishes (see proof below). Furthermore, we have introduce the 4™ term
so that the values of these modified higher order parameters will have the same values as
those found by examining the large ¢ behavior.

In some respects, this altered definition is completely cosmetic. It will not change
anything in the way we define the higher order parameters, and for any work where
lpnae < 00, it will still be necessary to sum each term from ¢ = 0 to £ = {,,4., so that it
is possible to account for any finite contribution we would be adding by introducing the
higher order regularization parameters.

On the other hand, writing the D, term in this form will be useful when we can look
at an analytic expression for the general-¢ expression for the retarded field in Chapter 6.
There, we will be able to renormalize the fields “by eye,” by writing terms that fall off
as £ to a finite power in terms of this finite sum in addition to a term that falls off faster
than any power of ¢, allowing us to pick out pieces of the singular and renormalized field
on sight.

So, let us return to the original contradiction, where it seemed that the function ¢%
that we were treating as a C™ function fell off only as £~2. By including the additional
D™ terms we increase the rate of convergence by a factor of /=2 for each term we include.

In principle we could continue to compute the D" terms to arbitrarily high order 3 so

"The from in the first line of Eq. (3.7.4) was first used by Detweiler et al. [48]
8although the practical difficulties become prohibitive after the first several terms
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Similarly, including successively more terms in the mode-sum is akin to including
successively more terms in the local expansion of the singular field. Therefore, as we can
see, the ambiguity in the definition of the singular field discussed in section 2.4 works to
our advantage as it allows us to make ®¥ as smooth as we like at the particle.

Now, we will give the proof that these sums actually do vanish.

3.7.1 Vanishing Sums

We show the relation ?

oo N
1
-0, (3.7.5)
Z;££@€+1—2mﬂQ€+l+2mﬂ

for N and each m; positive integers with the m, distinct: m; # m;, V ¢ # j.
The product in Eq. (3.7.5) has a partial fraction decomposition of the form

N

1 _iA 1 1
P01 =2my)(20+ 1+ 2my) T [(20+41-2my) (20414 2my) |

J 7=0
(3.7.6)
where
N -1
&=4WHWM—ﬁﬂ : (3.7.7)
JF#
Eq. (3.7.7) follows quickly from the decomposition
1 1 1 1
=— — . B th in Eq. (3.7. -
Gom@rm) [x “om 71 2m] ecause the sum in Eq. (3.7.5) con

verges absolutely, we can re-order the sums over ¢ and j, writing

oo N 1 N ) 1 1
S -S| -
= (204+1—2m;)(20 + 1+ 2m;) = = 20+1—-2m; 2041+ 2m,

(3.7.8)
We now show that the sum over ¢ vanishes for any positive integer m;. We start by

noting that that the first 2m; terms involving 1/(2¢ + 1 — 2m;) separately sum to zero

9This proof was first given in [24], and is reproduced here verbatim.

SR Zyl_i.lsl
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(the terms are antisymmetric about ¢ = m; — 1/2): 69

2m;—1 mj;—1 2m;—1 1

1
;%H—mj - Z 2. 20+ 1— 2m;,

l=m;
mj—1 1 mj;—1 1
B o P S . Y
Lo o041 —2m; 4= 20+ 1-2m,

where ¢/ =2m; — 1 — (.
The remaining terms 1/(2¢ + 1 — 2m;), beginning at ¢ = 2m;, are now identical to,
and cancel, the terms 1/(2¢ + 1 + 2m;), beginning at ¢ = 0. Denoting by ©(¢ — m;) the

step function vanishing for ¢ < m;, and having the value 1 for £ > m;, we have

@(é—mj) . 1

WK

;[2€+1—2m3 20+ 14 2m;

£=0

I
WK

1 1
[2£+1+2mj _2£+1+2mj}

~
Il
o

O

I
o

(3.7.10)
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Chapter 4

The Renormalization in Electrovac

Now that we have set the foundations for regularizing particles undergoing accelerated
motion, let us consider how the insights we have gained can help us understand this
process for a system of interest for fundamental physics. There has been recent interest
in whether self-force plays a fundamental role in enforcing cosmic censorship by prevent-
ing one from overcharging (or overspinning) a near-extreme black hole [25-28]. In this
context, one would like to analyze scenarios in which gravitational and electromagnetic
perturbations have comparable magnitude. The study of these scenarios introduces two
new elements of this system, requiring us to analyze the singular behavior of the fields
very carefully.

The first novel element is the renormalization of a pair of coupled divergent fields. It
is not clear how this will affect the singular fields, as the metric perturbations will be
caused not only by the presence of the point mass, but also by the interaction between
the point charge and the background field.! Similarly, the singular electromagnetic field
will receive contributions from not only the point charge, but also due to the modified
definition of the derivative entailed by the presence of the metric perturbation.

This modification to the electromagnetic perturbation naturally leads us to the second
novel element: all previous work in renormalizing a gravitational perturbation considered

only renormalizing a field on a vacuum background spacetime.. So, if we were interested

I But not due to the stress energy of the perturbing field itself- that would be a second order correction

to the self-force
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in the less ambitious problem of computing the gravitational self-force on a point mass
moving along a geodesic in a Riessner-Nordstrom spacetime, we would still need to extend
the body of work summarized in Chapter 2 in order to account for how the distribution
of the matter in the spacetime is affected by the perturbing field.

In this Chapter, we explore the results of the second paper of Linz, Friedman, and
Wiseman, [29].2 The primary result is somewhat surprising; the coupling of the fields
does not play any role in the renormalization. That is, the renormalized mass is obtained
by subtracting (1) the purely electromagnetic contribution from a point charge moving
along an accelerated trajectory and (2) the purely gravitational contribution from a point
mass moving along the same trajectory. In the context of mode-sum renormalization, this
means that the required regularization parameters are sums of their purely electromag-
netic and gravitational values.

Once again, we will assume that the retarded fields have already been found through
some other technique, and we will instead focus on recovering the singular fields needed

to renormalize these retarded fields.

4.1 The Perturbed Fields in Electrovac Spacetimes

We consider a point particle of mass m and charge e moving with trajectory z(7) in a
smooth electrovac spacetime, (M, gag, Fug), with F,s5 a source-free electromagnetic field.
The metric g,s of the background spacetime then has as its source the stress-energy
tensor of Fg,

1
Gop = 87T =2 (FWFﬁ“ - ZgagF‘“’FW> , (4.1.1)

where F,3 satisfies

VgF =0,  VaFz =0, (4.1.2)

2As we reached our results, we found that Zimmerman and Poisson [30] were simultaneously studying
the same systems. After a discussion with them, we were able to compare our results and determine that
the approaches used were different enough to warrant separate publications. We borrow their results in
section 4.2 in order to demonstrate how the qualitative results we find here are also valid for a point

mass carrying a scalar charge moving in a scalarvac spacetime.
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We are interested in the self-force per unit mass on the particle at linear order in m and e.
More precisely, one could consider a family of solutions g, s(m, ¢), Fos(m, e) whose source
for nonzero m and e is a body of finite extent, where e/m has a finite limit as m — 0 and
where the characteristic spatial length of the body is, like e, linear in m for small m. At
m = 0, the spacetime is the electrovac background, and the m — 0 limit of the family of

trajectories is given by the Lorentz force law of that background,
€ B
ao, = —Fopu”, 4.1.3
m B ( )

where u® is the particle’s velocity, a® = u#Vgu® is its acceleration relative to the back-
ground geometry, and V, is the covariant derivative of the background metric. The
self-force arises from the perturbations in the gravitational and electromagnetic fields
due to the body. We denote by 0@ the linear perturbation in a quantity Q(m, e),

dQ :=m 3Q(m,e) +e 9 (m, e) . (4.1.4)

Om meo=00)  O€ (m)=(0.0)

Then Q(m, e) = Q+6Q+0(m?, em, e?), where @ = Q(0,0). The perturbations h,s = 0gas
and 0 F, 3 are the linearized gravitational and electromagnetic fields of a point particle with
trajectory described by Eq. (4.1.3). In the problems that motivate this approximation,
the background spacetime is nonradiative and the perturbations are the retarded fields
his and 0F.y of the particle, but the renormalization procedure is unrelated to these
restrictions.

In the remainder of this Chapter, as in the previous paragraph, the symbols g,z and
F,p5 will refer to the background metric and electromagnetic field. Quantities that refer
to the total quantity will be written in boldface, so that g,5 = gas + hap is the full metric
and Fog = F,3 4+ 0F,p is the full electromagnetic field.

For a smooth perturbation g,5 = gag + hag, Fap + 0Fap of the geometry and electro-
magnetic field, the 4-velocity u” of the perturbed trajectory, normalized with respect to

the full metric satisfies

M(gag + has)W (Vo + 0V = e(Fop + 0F,p)0". (4.1.5)
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Grouping terms involving the perturbed 4-velocity u® on the left, we have

~ ~ ~ 1
MJap uvvvuﬁ — eFaguﬁ = edF,3 u’ —m {haﬁaﬁ + (VghoW — EVoéhm) uﬁu”’] ,

(4.1.6)

where we have kept only terms up to linear order in the perturbed fields. The right side
plays the role of a force due to the perturbed fields, for a trajectory parameterized by
proper time with respect to the full metric, g,4. It is more common to parameterize the
trajectory by proper time with respect to the background metric, g,g. The 4-velocity u®
is then normalized by

Japu®u’® = —1, (4.1.7)

and we have u® = (1 — hg,u’u?/2)u® + O(h?). With this parameterization, the self-force
is orthogonal to the unperturbed 4-velocity u®. Recalling the definition of the projection
operator orthogonal to u®,

qs = 05 + uug, (4.1.8)

the equation of motion takes the form

Mg’V u’ — el gu’ = f, = fEM 4 fOR (4.1.9)

o

where fEM and fC¢F the contributions from the electromagnetic and metric perturba-

tions, are given by

fEM e Fypul, (4.1.10a)

1 1
ng = —mqg (v,yhgg — §V5h75)u7u5 + hma” + §h75u7u5a5 . (4.1.10b)

Note that in Eq. (2.5.26) the symbol fS¢ denotes the expression without last two terms,
the terms proportional to the background acceleration a®. For the remainder of this
Chapter, all indices will be raised and lowered by the background metric, and the per-
turbed trajectory will be parameterized by proper time 7 with respect to the background
metric.

As we stated in section 2.4, when the unperturbed motion is geodesic, the renormalized

self-force at a point z of the particle’s trajectory can be obtained as the p — 0 limit of
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an angle average of fI¢ over a sphere S, of geodesic distance p from z [23]. Explicitly,

1
fE(z) = lim(fr"y, = —lim [ dQfr, (4.1.11)
p—0 4

™ p—0 S,

where the components f¢ are given in Riemann normal coordinates (RNCs) centered at
z. (Equivalently, the average is taken in the tangent space at z with f7¢ pulled back by
the exponential map.) When the trajectory is accelerated, the angle average leaves a term
proportional to a,/p, which can be regarded as a renormalization of the mass, m®. The
renormalized self-force on an electromagnetic or scalar charge moving on an accelerated

trajectory has the form

fat = 1lim [(fz*), = n%(p)aa] , (4.1.12)

p—0
with m¥(p) o< p~1. For the more general situation we consider here, with electromagnetic
and gravitational perturbations each contributing to the self-force, we again assume that
fis given by Eq. (4.1.12).

We assume that, to linear order in the perturbed fields, the trajectory z(7) of the par-
ticle satisfies the renormalized Lorentz-force law equation, associated with the perturbed

metric gopg + hap and electromagnetic field F,5 4+ 6 F g,
g5 (1, )V u (m, €) — s (m, ) = £ + ofn?, em, ¢2), (4.1.13)

where fI is obtained from the formal expression fret = fEMret 4 fGRrel of Fq. (4.1.10)
for the self-force by angle average and mass renormalization, as in Eq. (4.1.12).

We will show that the renormalization of Eq. (4.1.12) is equivalent to separate renor-
malization of the electromagnetic and gravitational contributions to the self-force fZX. It
will then follow that in the mode-sum renormalization, there is no mixing of gravita-
tional and electromagnetic parts: The renormalization is equivalent to subtracting (1)
a singular expression fJ = fEMS 4 (GRS where fEM.S is the purely electromagnetic
contribution from a point charge moving along an accelerated trajectory (with no per-

turbed gravitational field); and f&%9

is the the purely gravitational contribution from a
point mass moving along the same trajectory that would arise if there were no perturbed
electromagnetic field.

As in Chapter 2, we consider the field in a convex normal neighborhood C' of the event
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2(0), denote by x any point of C' and by € the length of the unique geodesic from z(0) to 75

x (see Fig. 4). We choose 7 = 0 at the position of the particle where we renormalize.

z(1)

®
SV

Figure 4: The particle trajectory z(7) and a field point, x. A geodesic from z(0) to = has

length .

We work in a Lorenz gauge for each field. In this gauge, it is most useful to introduce

the trace-reversed metric perturbation

1
YaB = haﬂ - §gaﬂh5(5 (4114)

and a vector potential A, for which 0F,3 = V,0A43 — V30A,. These two perturbing

fields satisfy the gauge conditions
VA% =0,  VP5Az=0. (4.1.15)
In this gauge, the perturbed Einstein equation, ¢G5 = 87T, 3, has the form
—26Gas = Das + 29,75 s
= —167rm/uau/35(4)(x, 2(7))dr — 8 <F(aééﬁ)7 - iga/gFV‘s) OF.;

+ [4Fa7Fﬁ5 — 2Fo Fy g — 2gagF, F*

1
+FF (5;5;‘3 + §gagg”‘s>}w,

(4.1.16)
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1 1
o, é 9 d d

To make simplify the notation, we combine the last line of Eq. (4.1.16) with the term

QQOJ”BJ%(; which allows us to write

Dya@+2§2a755%5 = —167rm/uau5(5(4)(x,z(7'))d7'
5 1
~16 (F(a[ 0g" = Z—lgaﬁF%) 8,8 As, (4.1.18)
where
A § . 6 1) € 6 de
050 = Q) =28, Fy)* + F. Fyeg™ + gapF " F
1 1
— PP (53@52) + §ga5g75) : (4.1.19)

The perturbed Maxwell equation, §(VzF*?) = 4765¢, is given by
O6A, — R25A; = —47re/ua5(4)(x,z(7'))d7'
1
v KF} 8+ F,°0% — Eg’vmﬂ) %5} : (4.1.20)

To find the singular behavior of the perturbed fields v,3 and dA,, we follow the
formalism described in Chapter 2; we introduce Riemann normal coordinates (RNCs)?
{z#} with origin at z(0) and find the coordinate expansion of the perturbed fields. As
in the case of particles with purely electromagnetic or gravitational interactions, the
angle-average renormalization of Eq. (4.1.12) is equivalent to identifying and subtracting
from f7¢ a singular part f2, for which the difference fr¢ — f° is continuous at the
position of the particle. The singular expression f? is in turn obtained from Eq. (4.1.10)
by replacing 7,3 and dA, by singular parts 756 and A3 of the perturbed fields. A
comparison with the singular potentials found by Poisson and Zimmerman [30] using the
Detweiler-Whiting singular fields shows that shows that the angle-average renormalization
is again equivalent to the renormalizing using the Detweiler-Whiting prescription for the

renormalized Green’s functions.

3Since we will not be changing coordinate systems in this Chapter, we will drop the convention of

‘hatting’ the indices when an expression is computed in RNCs.
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In order to make the greatest use of the results from Chapter 2, we decompose the

field perturbations into two pieces, ’y;fﬂ = 1Yap T 117ap and §AS = (A, + 1A, satisfying

O s +20,7 17,5 = —16mm / uugd™ (z, 2(1))dr, (4.1.21)
O A, — R A; = —47Te/ua5(4)(x,z(r))dr, (4.1.22)
and

O 105 + 20,5 175 = —16A,57°0,64;, (4.1.23)
DH%—R&Mﬁ:-qvﬂwﬁﬂ@, (4.1.24)

where

1
d 5

Ag” = F(a[ 55)'” - L—lgagF”‘S. (4.1.25)

At dominant order in € for each of the four pieces, this is the decomposition of Eq. (4.1.4):

0
Nap = M a—Vfﬁ(m €) [1+O(e)], (4.1.26a)
M (m,e)=(0,0)
0
s = € 5 Vas(me) [1+0(e)], (4.1.26D)
€ (m,e)=(0,0)
A, = e §5A§(m, e) 1+ 0(e)], (4.1.26¢)
€ (m,)=(0,0)
nA, = m 25A§(m, e) [1+O(e)] . (4.1.264)
Om (m,e)=(0,0)

We can quickly find the short-distance (Hadamard) expansion of the solutions to
Egs. (4.1.21) and (4.1.22), because their forms are nearly identical, respectively, to the
equations governing the gravitational perturbation due to a massive particle with no
charge, and to the electromagnetic perturbation due to a charged particle whose gravi-
tational perturbation can be neglected. Eq. (4.1.22) is in fact the electromagnetic per-
turbation equation of a spacetime with no background electromagnetic field, but with
the present background metric; with the formal expressions for the retarded and singular
fields given in Eqgs. (2.5.17) and (2.5.18) respectively. Eq. (4.1.21) differs from the equa-
tion governing the metric perturbation of a point mass in a vacuum spacetime only by

the substitution R(jﬁ‘S — Qavﬂé' As seen in the next section, the Hadamard expansion of
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the field ;7,4 differs only by the same substitution in Eq. (2.5.27) The RNC expansions 78

of solutions 7,5 and ;A, to Eqgs. (4.1.21) and (4.1.22) are given by

:E”’:Eez“muu)‘u‘s

353/2

1 _ Augug — Buaapyusa”
m 1701,3 - \/g

P2 (s + atisy) (g + ty10,) + 2
ana AU quv U, Uy A, Up)A, Uy

— 2uqugRyser + 4uﬂuyﬂ(a“6)"\/§

_UaBlg)eou?

3 (515",, + ueé"#ul,)

+ O(é?). (4.1.27)

and

1 A, Ue— agusz? N (uaRys — 2P Ror6)5)

e " VS 12¢/8

2aqu,ay + ao(qu + vuu,)| 2 z”
2v/'S

Prdx e \urus 6Ra5uﬁ — U R
—Ua R gyse 65372 + 19 \/§ + 0(52).

+2078° u, | a4

(4.1.28)

In Eqgs. (4.1.23) and (4.1.24) for ;;7.p and ;1 A,, the left sides involve the same linear
operators as those of Eqs. (4.1.21) and (4.1.22). The right sides are constructed not
only from the solutions we have just obtained for ;v,s and ;A, but also from the fields
117ap and ;1 A, themselves. We can obtain local solutions iteratively*, noting that each
solution is higher order in € than its source. In particular, the leading terms in ;v,5 and
1A, proportional to 1/ VS give dominant terms in 77,5 and 114, of subleading order,

O(€). The first iteration then uses on the right side the leading terms in 7y, and ;A,:

1
0] e T O(efl) = —166AaﬂVJU5|x:z(0)87 (\/_S_> (4.1.29)
0
1
] IIAa + 0(6_1) = —8mA75aﬁu7u5|x:z(0)8g (_S ) . (4130)
V L0

41t is not clear at this point whether this iterative procedure yields a unique solution, and is there
no reason to expect that it should. We will address this point in section 4.4, where we demonstrate its

uniqueness.

SR fyl_i.lsl
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Solving Eqs. (4.1.29) and (4.1.30) as RNC expansions, we find 79

¥é
usA\,, 5 Gret

1Yag = — GTJFO(E)
7 e
= _2m\/_5_0 (2a(o/r]f;)7 — 2511(5&6)7 — na5a7> + O(e), (4.1.31)
u,usA" P
IIAa = —4m i \/S_OB ‘I’O(E)
m

- & [Fus + % (aaus - 2uqas)| 2 + O(e). (4.1.32)

Here and from now on, when the symbols a,, u®, ¢.3 and Fi,z appear without explicit =

dependence, they denote the values of the corresponding quantities at the position z(0)
of the particle.

This first iteration is already enough for the principal results: The singular part of
the self-force at leading and subleading order and, in particular, its contribution to the
renormalized mass are unchanged by the gravitational-electromagnetic coupling. The
result is due to a remarkable cancellation of the contributions to the self-force from the
two mixed terms. That is, the contributions at subleading order arising from the coupling
of the electromagnetic and metric perturbations are equal and opposite. To see this, we

compute the self-force using Eqs. (4.1.10) in the form

fEM = e(0a6As — 050 As), (4.1.33a)
1 1 1
fo?R = _mQQ [(V{}/@; - §Vg%5 + §a5775> wu’ — Zl(vﬁ +ag)y + Yoy’
(4.1.33b)

Substituting ;rv.s and ;rA, from Egs. (4.1.31) and (4.1.32) gives the contributions

proportional to em, namely

& Y adig
aff™M, = —emu’Fog ( CH L ) + O(e")

VAT
= —fC°R . (4.1.34)

Note that the angle average of each contribution,

2 1 2 m?
(i fPMER ) = FZemFupu’ —= =

3 VS 35

is proportional to a, and would contribute to the mass renormalization if the terms did

(4.1.35)

not cancel.
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The sums 1Yas +11 Yap and (A, +11 A, are the singular fields to O(€): 80

€

p Mg Ug — 2 (ma(auB)uE + eu(;Aaﬁwq%) T
7046 - 4 \/g
ey, — <eaau6 + 4mu7u(;A75aﬂqf) x¢

§AS = NG + O(e). (4.1.37)

We will now continue the iteration to obtain an O(e) contribution ;;7v.s and ;1 A, by

+0(e), (4.1.36)

including on the right side of Eqgs. (4.1.23) and (4.1.24) their known expansions through
O(e"). We obtain in this way the O(e) contribution to the singular fields 75, and 6A2.
In principle, one could add to the iteratively obtained field a homogeneous solution to
the flat-space wave equation of the form P®")(z)/Sy 1/ ?, where P is a homogeneous
polynomial of degree 2n in the coordinates {z#}. We show in Section 4.4, however, that
the fields 755 and 51455 obtained by our iterative method are the singular fields through
sub-subleading order. Substituting the expressions (4.1.36) and (4.1.37) for 7,5 and 6 A,
back into Egs. (4.1.23) and (4.1.24) respectively, we have

. A . € 0] 2
DH’Va,B + QQa’Y,@éH’yvé = _16Aa,376<x>8’7 (BU(S TRt T (6 )) ) (4138>
V'S
8, s + 2V-sex€ + O(€?
DHAa — RQHAB = —VB |:A75a6<x> ( 7 \;g ( ) 775 .
(4.1.39)
where A,p and 7,4, are defined by
Ay = —eagup — 4mA,y5a€u7u5qg, (4.1.40)
Yapy = —8 (111ct(auﬁ)u7 + eAaﬁgeqiue) ) (4.1.41)
The RNC expansion of AM;’B “(x) about z(0) is given by
A (@) = A omao) + A7 2+ O(€7), (4.1.42)
where
(8% (6% ]'
AWSB e aeAv(SB |ac:z(0) = <86F(oz [655)7] B ZlnaﬁaeF’ﬂs) " . (4143>
z=2z(0

Solving Eqs. (4.1.38) and (4.1.39) for ;17,5 and ;7 A4, to O(€)) and adding the result

to_the expansions of ;7,5 and rA,, we obtain the singular fields to sub-subleading order,
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45 = Amuats + Yapet® i Ama2’ [(aads + aatip)) (G + tytis) + 20(attp)ayus]
” VS NG

Am o Ry E’UJ’Y.’I}&Q?)‘ N
Am u(o Rg)r43 + dmuusQ, VS 4 4A T As (uuy — )

RN

KA q arzh
X 6’\\/§+M>+4eu1\ 75{u€u — 0 R 4 VS| —
<’Y \/§ 0daB e ( A )\) \/g qu
A, 8

rxat et

353/2

QmUQUgR,ygE)\ + 0(62),

(4.1.44)

and

sAS — Cla + Anpr? e <uaR75 - 2u5Ra(75)5>
° VS 12v/8
X [5353 + 207w, 0 4+ wu’ (g + wuu,)] 2"
e [Zaaa(;uv + a0(gys + uyus)
2 VS
Aytgaﬁuﬂzﬂu‘suual,x“x”
V'S

5 s
Amuus A" ope T A7 o Trbe B A g

+ : (ufuy — 65) (nkﬂ\/? + & )

] 7z’ + gu’BRQg\/g

+4m

V'S
+ O(é?). (4.1.45)

2P e \uus

—CUq Rg,y(;e 653/2

In the singular fields we have just obtained, the sub-subleading terms are even func-
tions of the coordinates z#. Because the expressions for the self-force in Eqgs. (4.1.33)
are proportional to the gradients of the potentials, they are odd in x* and will therefore

vanish upon angle averaging. The remaining contributions to the self-force are at leading

and subleading order, O(¢~2) and O(e™!), and we find

8 Y o0 a3 1e€
XT rT'r xr-r a
fs (62 2) Gap a

a - [Qa Ay (3Nes — 2Ges) — QalyoMe ] —
53/2 - o 53/2 VSo

(4.1.46)

As with the uncoupled fields in Chapter 2, terms of order O(€®) can be written as a
seventh order polynomial in z* divided by Sg/ 2, manifestly odd in the RNCs. This
implies not only their angle average vanishes, but also that they do not contribute to the
arization par

regul wmeters A, and B, in mode-sum regularization.

SR fyl_i.lsl
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With the cancellation of the mixed terms in the expression for the self-force, f2 at 82

subleading order is unaltered by the coupling of the electromagnetic and gravitational
fields when it is written in terms of gng, Ua, @, and the RNCs. A charge e, moving with
this acceleration in a geometry with this metric but with no background electromagnetic
field, has £ given by the part of the present f2 that is proportional to ¢?; and a mass m,
again moving on the same accelerated trajectory but with non-gravitational interactions
ignored, has an f2 given by the terms proportional to m?.

In section 4.2, using the potentials obtained by Zimmerman and Poisson for a particle
of scalar charge ¢ and mass m moving in a scalarvac spacetime, we find that the analogous
result holds. Again to subleading order, there is no mixed contribution to the singular
expression for the self-force; f2 is at this order the sum of its purely gravitational and
scalar terms, and the mode-sum regularization requires only parameters A, and B, that

are each the sum of independent gravitational and scalar parameters.

4.2 Decoupling in Renormalization of a Massive Scalar Charge.

Using work on a massive scalar charge by Zimmerman and Poisson [30] (ZP), we ver-
ify here that there is no cross-term at subleading order in the singular expression for
the self-force of a massive particle with scalar charge moving in a background scalarvac
spacetime. The result implies that, as in the case of a point charge in an electrovac space-
time, the renormalized mass is obtained by subtracting (1) the scalar-field contribution
from a point charge moving along an accelerated trajectory and (2) the purely gravita-
tional contribution from a point mass moving along the same trajectory. In a mode-sum
regularization, the regularization parameters are then sums of their purely scalar and
gravitational values. This is most easily seen using a system of RNCs with origin at z(0),
and where we choose time slices so that the field point lies on a surface orthogonal to the
world-line (so that u, = (1,0,0,0) and u,z® = 0).

Subleading terms in f? due to the coupling of fields arise from terms of order € in
% that are proportional to m and from terms of order € in 75[3 that are proportional to

q. We consider first the contribution to the self-force from ®°. From Eq. (6.19) of [30],
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written in terms of our RNCs with origin at z(0), we have

1 .
o = \/_§[71U + Uaz® YU + O(?)], (4.2.1)
0

where 77 and 7 are independent of the perturbed fields, with 7,[2(0)] = 72[2(0)] = 1.
From Eq. (7.25) of [30], U and U have no terms proportional to m, which is to say that
coupling of the fields does not effect the scalar field until at least sub-subleading order,
and therefore, it cannot effect V,®* until sub-subleading order (O(°)).
We turn next to the contribution from ’yfﬁ. The symbol 7 in ZP is 7 = u.2z. Again
from Eq. (6.19),
s = %[%U“ﬁ + ua U + O(e?)).

From Eq. (7.25), careful inspection reveals that, to relevant order, U is identical to the
term one would find for an uncharged massive particle. When one considers U5 there

is a single term which arises from the coupling of the fields, namely

Ues = —dqPuu’.

coupling —

From Eq. (6.21), 72 = 14+ O(€), and the single term arising from the coupling of the two

fields in v*% is then
of — _4u7_x7

rycoupl ing \/_
So

The contribution of this term to the self-force at subleading order is then

qduu’.

@7+ ) — 400 Vs

. By Y
g [&] Lo, (22
/2
SO t=0

m
4

t=0

using u; = 0. We conclude that there is no contribution to the self-force through sub-

leading order due to the coupling of the two fields.

4.3 Gravitational Green’s Function in a Non-Vacuum Space-

time

We will make extensive use of the treatment found in [35]. The goal is to find the Green’s
function G*° 5/(2,2'), where x and 2’ are two arbitrary points in a convex normal neigh-

borhood C, and unprimed and primed indices are tensor indices at x and z’, respectively.
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When we apply this to solve for ;7,5 in Eq. (4.1.27), we set 2’ = 2(0). We consider the 84

purely gravitational Green’s function, the solution to
DGaﬁv,é,(x,x') +20°,G" g (x,a) = —47rg(a,y, (z,2)g", (2, 2/)6W (z,2"),  (4.3.1)

where g%, (x,2") is the bivector of parallel transport, taking a vector, ”U’Y'(a:’ ), defined at
2’ and parallel transporting it along the unique geodesic connecting x and z’, resulting
in v*(x,2") = g“v,tﬂ’ (z').

The retarded and advanced Green’s functions G*” 5+ (2, 2") have the form,
G il a) = U 5 (2,2")04(0) + V5 (2,2))0(—0), (4.3.2)

where the distributions 04 and 64 are defined in Section 13 of [35], and o is Synge’s world
function. Substituting Eq. (4.3.2) into the left hand side of Eq. (4.3.1), we find (with the

argument (z, ") of bitensors suppressed)

0G5 +20°,0,G" 5 = —4xU ;6@ (2, /)
+34(0) (205,07 + (07, = U5 )
+04(0) (—QVC“%,J,W o+ (2 -0 )V
HOUY 5 + 20,0 ))
0. (—0) (DVO‘BW, +20° 8,V )

= —4rg" g5 0D (2, 2. (4.3.3)

In comparing this to the corresponding (unnumbered) equation in [35] (between Eq. 16.7
and 16.8), it is clear that the only difference is that the tensor Ravﬁ s is replaced here
by Qo‘f s- Following the same technique used in [35], we require that the coefficients of

&' (o), 04(0), and 01 (o) separately vanish. We thereby find,

U”'Bv,l;,(x,x’) = g(ay,(a:,x’)gﬁ)a,(m,x’)Al/Q(x,x')

o 1 ;g
- g( ! (.17, x')gﬁ)g, (l’,.TI) (1 + ER’Y"S'UV 0'6 + 0(63)) s (434)

and

s VR ., .
Vel (2l 2) = —2 125 ( )+Qa(7,65,)(x’). (4.3.5)

www.manaraa.com



85

Since R = 0 for electrovac, the only difference between the Hadamard expansions of a
point mass in vacuum and ;7,4 is in the bitensor Vs -5 » where instead of the Riemann

’

tensor we have QO o
(v 9)

4.4 The Iterative Method

We show that iterative solutions (4.1.44) and (4.1.45) obtained in Sect. 4.1 are the near-
field expansion of the singular electromagnetic potential § A” and trace-reversed metric
perturbation ”y;%t. To do so, we use general features of the Hadamard expansion for the
singular fields to constrain the form of the expansion; given these constraints, we show
the iterative solution is unique. It is helpful to use RNCs {t, z'} for which the ¢ =constant

surface is orthogonal to u®. We write r := /d;;2'2/ = \/qapr®2” = /5.

We begin with the Detweiler-Whiting form of the singular fields, with RNC compo-

nents
1 [Ja [Ja Tadv
§AS(z) = -(f b )- / Vol(z, 2(7))dr, (4.4.1a)
2 O lret 0 ladv Tret
1 [Ja [Ja Tadv
vas(x) = 3 (Tﬁ » + T’B adv) —/ Vags(z, 2(7))dT. (4.4.1Db)

Here U, (), Uas(z), Vo(x) and V,p(x) are smooth tensors defined in the convex normal
neighborhood C' of 2(0), with U, := U,[2(0)] = euq, Uap := Unpl[2(0)] = dmuyug.

The coincidence values, V,, := V,[2(0), 2(0)] and V,g := V,5[2(0), 2(0)], determine the
values of the integrands in Eqgs. (4.4.1) at sub-subleading order, O(e):

Tadv
/ Va(x) Z(T))dT - (Tadv - Tret)va

Tret

= 2rv,+ O(é?), (4.4.2a)

/ s (1) dr = 2 Vas + O(E). (4.4.2b)

Tret
The iteration finds these terms and the expansion of the terms involving U, and Uyg. In
the terms involving U, and U.g, 1 /dret/adv depends only on the background spacetime

and the trajectory and is the same for each field. Its expansion is given by

Lo % [1 - % (1 - i—i) 42" + 0(62)] (4.4.3)

Oret/adv
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Because 1/6,0; = 1/644, + O(e) and U (z) = U (z) + O(e), only the combination 86
US(x) = 3[Ur(x) + U%%(x)] appears in the expansion at sub-subleading order, O(e).
Writing

U (7) = Uq + 270,U5 + %x”m‘S@W@gUi + O(€%),

«

we have

s 1 ¢ 1 t2 5
0AZ(x) = —|Uy+270,U0, — - |1 Unape
r

2 2\ ?
Lo id9 ous L t? .05 P
+§:)3x 75Ua_§ 1_ﬁ agd, U, 1"
+terms independent of US + O(€%)] — r V. (4.4.4)

We begin by showing uniqueness at subleading order of the solution ;;A, to
Eq. (4.1.30). To the solution given in Eq. (4.1.32), one can add any f,, satisfying Of, = 0.
At subleading order, however, the only term involving U2 is %x”@ng, linear in the co-
ordinates. At subleading order, f, must then be linear in the coordinates, with each
component having the form a,z® = atf + aﬂ%, a sum of monopole and dipole parts.
Then O(ayz®) = 0 implies a, = 0, whence f, = 0, and the solution (4.1.32) is unique at
subleading order.

The solution at subleading order is now used to obtain a solution at sub-subleading
order, O(e). Because 0,U, is now fixed, the only ambiguity in the solution allowed by
the Hadamard form (4.4.4) is in the terms 21—rx7x58785U§”9 and —rV,: That is, the
solution §AS of Eq. (4.1.45) is unique at subleading order up to adding a solution to
Of. = 0 for which each component is of the form a,gx®x”/r. The spatial part a;jz'z’
can be decomposed into monopole and quadrupole parts by writing a;; = %&jaﬁ + aijF ,

STF ;

where a;7" © is symmetric and tracefree. Then aaﬂmaxﬁ /7 is a sum of monople, dipole and

quadrupole parts, namely
2 1 tat xizd
af k STF
aogrx” = | a + —agr | + 2ay +al "t —. 4.4.5
g ( T gk ) "oy Yooy ( )
Again O(ansr®2”) = 0 only if the D’Alembertian of each of these parts separately van-

ishes. We immediately conclude that the coefficients of the dipole and quadrupole parts

STF

vanish: a; = Oaj; ™. For the monopole term, we have

21 2 1
O (att? - ga’,:r) = —Amaut*0*(z) + (2 + Sa5)-, (4.4.6)
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vanishing only if ay = 0 = af. Thus f, = 0, and the solution §A%™ is unique through 87
subleading order.
The proof of uniqueness for ’ygﬁ is essentially identical, and is obtained by replacing

1144, 045 U, and Vosu® by 1148, 7567 Uag, and V,s.su7u’ respectively.

4.5 Discussion

We have demonstrated how to renormalize in electrovac based on the angle-average and

mass renormalization ansatz given in Eq. (4.1.12),

for = 1lim [{f2), = m(p)aa] -

p—0

By splitting our perturbations into two pieces, we were able to identify familiar solutions
( 17ap and ;0A,) which dominate for low e. Using these fields we solved iteratively for
the new solutions ( 777, and ;;0A,) arising due to the coupling of the gravitational and
electromagnetic fields. Furthermore, we were able to demonstrate that this method will
guarantee that we recover the true DW singular fields.

Due to a surprising cancellation, we find that the coupling of the fields does not
effect the renormalized mass, so that the values of the regularization parameters A, and
B, are the sums of the values for the purely gravitational and purely electromagnetic
contributions to the regularization parameters of an accelerated particle with either mass
m or with charge e. ® Using the results of Zimmerman and Poisson [30] we demonstrated
similar behavior for a massive scalar particle moving through scalarvac.

One thing that is important to note is that our renormalization of coupled fields has
not yet been rigorously justified by matched asymptotic expansions. Between our work
and that of Zimmerman and Poisson we have used two different approaches and recovered
the same renormalization procedure. Furthermore, Zimmerman, in a separate work® used
effective field theory to also recover this same result. The agreement of these very different

approaches is a compelling argument for their validity.

)

5The higher order regularization parameters D((fj presumably would involve terms arising form the

mixing of the fields, but they multiply vanishing sums.
6in preparation
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Even without a rigorous justification for our results, most of our results still must hold. 88
Since the self-force experienced by the particle must be finite, the leading and subleading
terms in the expression must be correct. In turn, this means that the A, = ASE 4 AEM
B, = B¢ + BPM | and that m® = m2, + m3,,, since these terms are required to make

the self-force finite. What we cannot say for certain is that D, term vanishes.
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Chapter 5

Scalar Self-force for Accelerated

Trajectories in Schwarzscihld

Up to this point, we have focused purely on renormalization, developing formal expres-
sions for the equations of motion in terms of a local expression added to a tail term, and
using these to derive the regularization parameters necessary for mode-sum renormaliza-
tion. While this work is fundamental to understanding BHP theory and renormalization
in general, we have always assumed that the expressions for the retarded fields were
known but have not yet actually computed a self-force.

In this Chapter and the following, we will compute the scalar self-force for a point
source moving along a non-Keplerian circular orbit in Schwarzschild spacetime. We will
use the formulation from Mano, Suzuki, and Takasugi [2] to generate analytic solutions
to the field equations (henceforth we will refer to their method as simply MST). Using
these, along with a useful mathematical insight from Hikida et al. [4] [5], we will compute
the first order scalar self-force in a perturbative, post-Newtonian-like manner. With the
aid of the computer algebra program Mathematica, we extend this analytic solution to
several orders.

After Pound et al. [49] derived the renormalization in a radiation gauge, interest in

applying this MST technique to the study of the gravitational self-force grew!. This work

1Keidl et al. [43] and Shah et al. [50] were already working in a radiation gauge. The work of Pound

et al. [49] provided a rigorous explanation of the renormalization
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has been further expanded in Merlin and Shah [51] and even more recently in Shah and 90
Pound [49].

Recently, Shah, Whiting, and Friedman [3] used the MST technique to generate very
high-order Post-Newtonian correction terms, including many that had not been recovered
previously. Even more recently, Shah and Pound [38] used these techniques to compute
coefficients up to 20 pN order for the spin procession and tidal invariants in Schwarzschild.

Since these techniques have been applied to astrophysically relevant systems, it would
appear odd at first to continue studying an accelerated scalar charge. Why study the
scalar self-force when the techniques have already been developed for use in the gravi-
tational system? As we will discuss in greater detail in Chapter 6, the method suggest
by Hikida leads to many apparent contradictions, and so we choose to study these in
their simplest form so that we can isolate these apparent contradictions from difficulties
associated with fields of higher spin.

In Chapter 1, we discussed some of the abstract reasons to study accelerated orbits,
the chief one being to open up a wider range of comparisons. For example, assume
that we have computed the self-force for a particle traveling along a circular motion in
Schwarzschild, using Kepler’s law to rewrite the mass of the black hole in terms of the
velocity of the particle. We will recover a complicated answer, and it would be very useful
to make comparisons between this result and other simpler, well known results.

If we tried taking the static limit of an solution computed under the assumption of
geodesic motion (to zeroth order), we would annihilate every term in our expressions;
for geodesic motion if v — 0 then M — 0. Similarly, in comparing the damping force
on the particle it would be reassuring to see if the expression we find has a sane flat-
spacetime limit, before using the expression to model more complicated physics. Here
too, we encounter the same problem. Therefore, if we attempt to take either of these
limits, the field reduces to that of a static point source in flat spacetime.

By considering accelerated orbits, the expressions we obtain will necessarily become
much more complicated than the would be for geodesic orbits, since, we cannot combine

terms of the form (M /r)* with v®. While this is certainly detrimental in many respects?,

2 for instance typesetting the equations themselves.
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it could prove beneficial in others. For example, Galley has pioneered the efforts to 91

apply effective field theory to the self-force problem (see for instance [52]), and even
though (M/r)* and v® are of the same order, they are associated with different Feynman
diagrams.

Finally, by considering accelerated circular orbits, we will recover the same expressions
that we will need for considering elliptic geodesics. We can develop the machinery of MST
and explore the implications of the insights from Hikida et al. [4, 5] in isolation from the
additional complexity when we can no longer simply replace the Fourier frequency w by
the term mf). In this way, accelerated circular orbits are a sort of stepping-stone towards
elliptic orbits.

This Chapter’s layout is as follows: First we will discuss the MST [2] formalism used
to generate the solutions to the differential equations in section 5.1. In section 5.2 we
discuss the methods for generating pN expansions using this method. In section 5.3, we
discuss the insights from Hikida et al. [4, 5] on how to separate the Green’s functions to
ease the regularization procedure in section . In section 5.4, we will discuss the methods
used to actually solve for the Green’s functions and the forces. Finally, we will finish up
this Chapter with a discussion of the damping force in section 5.5, leaving the conservative

self-force to the next Chapter.

5.1 The Teukolsky Equation and the MST Formalism

In order to solve for the retarded fields in a black-hole spacetime, we solve the Teukolsky

equation by writing its Fourier-harmonic decomposition,

Y = / dwe™ > "3 " Rupp (1) Semes (0, 9), (5.1.1)

=0 m=—¢
where the Sp,, (0, ¢) are the spheroidal harmonics, and the coordinates (¢, 7,6, ¢) are the
standard Boyer-Lindquist coordinates. Using this decomposition, the radial Teukolsky

equation can be written as

k% — 2is(r — M)k

A +2(r — M) (s +1)0, + A

— 4iswr — A| Rypm =0, (5.1.2)
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where s is the spin of the field, a is the spin of the hole, A = 12 —2Mr+a? = (r—ry)(r— 92
r),re=M+VM2—a2 k=(r*+a*)w—aM,\=FE —s(s+1) — 2Maw + a*w? and
E' is the eigenvalue from the spin-weighted spheroidal harmonics.

To solve this equation, we define the following new variables:

Z = wr; Z4 = Wry; €:=2Mw; T:= S
K
ki=+/1—¢?% q:= 37 T = Z+_Z; Z=z—z_. (5.1.3)
€K
Following Sasaki et al. [53] we write
—s—i(e+7)/2
Rugm =277 (1= 5) 3(2). (5.1.4)
3

With this substitution we can write the radial Teukolsky equation as

29" 4+ [P+ (2e+2is)2—A—s(s+1)] o=
ek [2(¢" + @) + (s — 1 + i1 + i€) ¢

(—E[ﬂ —ilemmlE 1T | gt (- 2) + i“<fs))) >

+
z

(5.1.5)

The left hand side of Eq. (5.1.5) has the form of the Coulomb wave equation. The right
hand side is of O(e) so as € — 0, ¢(2) approaches the Coulomb wave function. For the
case when € # 0, we introduce a quantity v, called the renormalized angular momentum.

We then add the quantity (A4 s(s+ 1) — v(v + 1)) to both sides of Eq. (5.1.5), finding

2¢" 4+ [+ 2e+is) —v(v+1)]o =

ek [2(¢" + &)+ (s — 1 +iT + ie)¢'] + (—6(/{ —ile = m?))(s = 1)

z

v+ 1)+ A+ s(s+1) — 2% + emq + ne(e-l—is))gb

(5.1.6)

Now, we will specialize to scalar fields (s = 0) and Schwarzschild spacetime (a = 0,
q=0, k=1, 7 =¢), with line element
dr?

20
T

ds® = — 1—%>dt2+1

" + 72d6* + r? sin? 0d¢?*. (5.1.7)
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In Schwarzschild spacetime, A = ¢(¢ + 1), which lets us write 93

v o0 1 ) n
@g:@@@y:(%y(l_g)ngipuz_@rﬁﬁégi%géxf%xaq, (5.1.8)
where
Fou(z,6) = e T Fi(n+v+1+ie2n 4 2v+2;2i(2 — ¢)), (5.1.9)

where 1 F(a; b; z) is a confluent hypergeometric function. We use the Pochammer symbol,

I'(a+0)
=7, 5.1.10

(a)b F( (1,) ( )
The a? in Eq. (5.1.8) are determined by inserting the solution ¢ in to Eq. (5.1.6) and

making use of the three term-recurrence relations for the confluent hypergeometrics to

generate a three term recurrence relation for the coefficients al;:

apa, 1+ Bhay, +ypa,_ =0, (5.1.11)
where
1+ ie)? 1—i
a‘T’L:ie(n-i_V—i— +ie)*(n+ v+ ze)7 (5.1.12)
(n+v+1)(2n+2v+ 3)
4
Y g0+ 1 1) + 2¢2 ‘ 5.1.13
B, l+1)+(n+v)(n+rv+1)+2€ +(n+y)(n+y+1), ( )
. _. 2
W om elntvtionty - i) (5.1.14)

(n+v)2n+2v—1)

We will normalize our answers by pulling out an overall normalization term and as-
serting that ag = 1. The three term recurrence relations are closely related to continued

fractions. We define the “right mover” and “left mover” respectively,

aV _,yl/
R, =—" = L
ap_y Byt anRop
Ly = —m — (5.1.15)

G Bn+iLay

Thus, it is possible to generate the a! by successive applications of the right mover for
n > 0 and the left mover for n < 0. At this point, it is useful to stop and consider two
different issues with convergence. First we need to know if the solution generated by using
the left mover will converge to the same answer found by using the right mover. Second,

once we have these solutions, does the infinite sum over the coulomb wave functions

SR Zyl_i.lsl
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To answer these, we will follow the discussion of a similar relation by Koranda and 94
Allen [54]. In general, a three term recursion relation will have two independent solutions.
These solutions are called minimal solutions if, as |n| — oo, the a¥ — 0. A solution which
is not minimal is called a dominant solution. While three term recursion relationships
will have two linearly independent solutions, there is no requirement that either of them
are minimal solutions.

If we consider it from the point of view of the continued fractions, we can utilize
Pincherle’s Theorem [55], which tells us that R,, (L,,) converges for n > 1 (n < —1) if and
only if the recurrence relation has a minimal solution for n > 1 (n < —1). Furthermore,
if the right or left movers converge, then they converge to the minimal solution.

Now, imagine that we have such a minimal solution and can therefore find the a,
we can still have an unsatisfactory solution. This can happen when the right and left
movers converge to different minimal solutions. In short, this happens because while we
can generate the a” for positive n with the right mover, and the a” for negative n using
the left mover, we have not related a”; to aY, so the negative n and positive n solutions
have no way of “knowing” anything about the other solution. Fortunately, we have yet
to specify the renormalized angular momentum, v, and therefore we can use Eq. (5.1.11)
for n = 0 to calculate v, which will “inform” the positive n solutions of the negative n
solutions and vice-versa.

Now that we have discussed the theory of these solutions, we need to make sure that
our solutions actually do converge. To solve for the a! we treat € as a small parameter
(e << 1) and expand each a}, as a series in e. Then we solve for the terms using the
recurrence relationship, normalizing such that af = 1.

If we assume that v = ¢ + O(€?), then by inspecting Eqs. (5.1.12-5.1.15) we can
state that for all positive n, R,, o< O(€), meaning that the a” o €. Because € is a small
parameter, a; — 0 as n — 00.

When we examine the a? for n < 0, we notice that the coefficients given by Eqgs.

(5.1.12-5.1.14) have special cases forn = —¢, n = —¢—1, and n = —2¢ — 1. We can make
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the following statements (Eq. (5.3) of [19]), 95

L_g_l = 0(62),
Lo = O,

L, = O(), n#—l—1n#-20-1, (5.1.16)

which tells us that as n — —oo, a, — €*, and therefore the solution for n < 0 is also a
minimal solution.?

Notice that the original differential equation is symmetric under ¢ <» —¢—1 (which also
means under v <> —v — 1), which implies that we can also get a solution by making this
substitution. This gives us a second, linearly independent solution to the field equations,
where
a,” = (-1)"a",,. (5.1.17)

Thus, we will call our two linearly independent solutions to the field equations ¢! =
(22)7®" and ¢." ' = (22)7*"1d7*71.4 Now that we have discussed the general process

for generating our solutions, there are a few practical elements that we need to discuss

in order to actually evaluate our solutions.

5.1.1 Boundary Conditions

We will introduce the new variable ¢ := 2z — € = w(r — 2M) to ease notation in the

following discussion. In terms of ¢, the radial solutions from Eq. (5.1.8) take the form.

[ee)

¢r = e (20" Y i"al ()

n=—oo

L (v 4+ 1+1de),
(21/ —I— 2)271

x1Fi(n+v+1+ie2n+2v +2,2iC) . (5.1.18)

Careful comparison with Egs. (3.1-3.4) in MST [2] reveals that this definition amounts

to a change in the renormalization, namely,

I'(2v +2)

3For s # 0, the first inequality reads L_,_; = O(1).
4The subscript ¢ here is used to emphasize that these solutions will be expanded in terms of the

unnormalized Coulomb wave functions (see Eq. (5.1.18) below).

SR fyl_i.lsl
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where RZ(LFE) are the MST solutions.® The change in normalization is an improvement—
it ensures that, aside from leading factor of (0,,)” = (sign(w))”, ¢ is real. Furthermore,
@Y now is free of any I' functions, a vitally important property in terms of the usefulness

of the techniques of Hikida et al. [4]. Using Eq. (6.7.6) from [56],

& F(C) 6io'w(a—c)ﬂ-ex C—ac —1
I'(c—a) T'(a) U( ;¢ =), (5.1.20)

where o, = sign(Im(z)) = sign(Im(2i¢)) = sign(w), and Eq. (33) from [57]

1Fi(a,c,x) = e ) (a, ¢, ) +

= @), (51.21)

we have

e ™I (20 + 2)
L(v+1 —ie)

o = <aw>v{|2<|”ei<emw<”+”

X Z “[2i¢]" U (n 4 v + 1 + i€, 2n + 2v + 1, 2iC)

n=—oo

i€ "T(2r +2)

_|_|2<-|1/€fig“€fi7rm,J

I'(v+1—ie)
X Zaz —2iC|"U(n+v+1—ie2n+2v+1, —22{)}
- (Uw)y (qbz,(in at 00) + ¢Z,(out at oo)) : (5122)

If we ignore the leading factor (o,)”, which is complex when the frequency is negative,
we see that the two terms in Eq. (5.2.1) are complex conjugates, meaning that ¢¥ is real
(up to the aforesaid leading factor) and is in fact real term-by-term in the summations.
Now, we will demonstrate that the final form in Eq. (5.2.1) shows that ¢% can be
written as sum of ingoing and outgoing solutions at infinity. It is also clear that from this

Eq. (5.2.1) that
Dein at 00) (W = —W) = & (out at o0)- (5.1.23)
By making the switch v — —v — 1, n — —n and using =% = a” (Eq. (2.17) in [2]),

we have

¢—l/ ! (Uw> - 1(félgbcm—i_‘A* cout) (5124>

®We have added the subscript (LFE) to emphasize that these solutions are the ones given in [2] (the
Low Frequency Expansion paper), as opposed to other slightly different functions (e.g. different variables,

different normalizations, etc.) that are given in other papers, yet use exactly the same notation.
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where

= sinm(v +i€) |T(v + 1+ i€)|?

~imeu(p+/2), 5.1.25
sin 27 (20 + D020 £ 2) (5.1.25)

The Asymptotic Behavior of ¢% and ¢,”!

|z]—o0

Using the asymptotic relation ¥(a, b, z2) —— 27%(1+0O(1/z)), [Abramowitz and Stegun
(58], Eq. (13.1.8)] we have

—le|/2
" e, 1 eTIRT(20 4 2) pae— (G40 /2-ma(u+1)/2)
elinat o) 2¢1 T(v +1 —ie)
(5.1.26)
where the various quantities are defined by
o0
> al = pee’ (5.1.27)
I(v+1+ie) b
— L = ¢r | 5.1.28
Tw+1—ic) (5.1.28)
We can construct the out-going solution at infinity by
¢Z,(out at 00) = ¢Z,(in at 00) (w — _w) = Q_SZ,(in at 00) (5129)

rovoo, 1 /2 F(2V+2)p iGN 2Cl+pa—dr /2—Tou (v+1)/2)
2wlr T(v+1—ie) ™

(5.1.30)
We can now solve for our solution that is outgoing at infinity
v —A v —v—
(constant) ¢c,(out at 00) = WTH¢C + ¢c ! . (5131)
The overall constant in front is irrelevant and thus we have
y A e Dging(v 4 de) [D(v + 1+ de)|? (5.1.32)
Te = (0,)2v+1 (0,)2+1  sin2av(2v+1DI'2v +2) o

When w > 0, 0, = 1 and our 7% = 74, of Eq. (A.4) from [5].

The Ingoing Solution at the Horizon

The solution ¢ is a series of confluent hypergeometric functions Eq. (5.1.9). Unfortu-

ly, this series is ergent as r — 2M, and therefore is unsuitable for exploring
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the detailed behavior near the horizon. To address this problem, MST introduced a second 98
set of solutions written as a series of standard hypergeometric equations, o F(a, b, ¢, x).
Remarkably, in the region where both this series and the confluent hypergeometric series

solution Eq. (5.1.9) converge, the solutions are the same, modulo an overall constant, K,

I'(2v +2) r2v+2) 1
v_ v -\ 7 = pv .
% =Twrit i) 0D T Ty T 1) K, o) o139
porte LE2W) py T2 1 o (5.1.34)

D(—v +ie) M) T(—py4ie) K_,_, °0FE)”

where R.rg) and R, wrg) are the solutions given by MST. In terms of these function,

the solution that is in-goin at the horizon R;, has the has a simple form

Ry, =Ryuwrg + RO_(VL}IE) (5.1.35)
_ D(v+1+ie) D(—v+ie) T2v+2)K_, bt
- T (2v+2) [(v+1+4ie) I(-2v) K, ¢

Ky |of +

(5.1.36)

This allows us to read off the relevant coefficient for the ingoing solutions

, T+ 2D (—v+ie) K,
b= T Twritio K, (5.1.37a)

Fv+2)I'2v+1) sin2mvr  K_, 4

= 5.1.37b
IT(v+1+ie)|? sinm(v—1ie) K, ( )
— _(26)21/—',-1 IF(V +1+ i€)|4 & ’
v +2)T'(2v + 1) \ pa
" cos(2mv) c'osh(27r<—:) -1 . sinh 27e (5.1.57)
27 sin 27y 2m

where p, and py come from the summations in the definition of K,. After some simplifi-

cation, they can be written as

v - n(2V + 1)n_y v

Y ;:o:(_l) B DGz and gy = |V (5.1.38)
v S n(_QV_ 1)71 —v— v

1 = E (—1) B 'and p, = |p¥] . (5.1.39)

n=0

Using the fact that a? = a~%"', we have ="~ = \*. These definitions for 3” agree with

B, from Eq. (A.3) in [5].

SR fyl_i.lsl
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5.2 Expansions 99

In order to solve for our retarded field, we will expand all functions in terms of the two
parameters € = 2Mw and z = wr. This is similar to a pN expansion because z ~ v and
€/z = 2M/r = 2v* (for geodesic motion), and thus we will frequently refer to expressions
in terms of their pN order. When we do this, it should be understood that these terms
are only first order in the mass ratio.

To understand this approach, it is necessary to study the individual elements in ¢

more closely. If we rewrite Eq. (5.1.18) in terms of only z and €, we find,

am@rw = o (- e 5 s (-2

(v +1+ie),

XWlFl(n+y+ 1 +i€, 2n—i—21/—|—2,222(1 — E/Z)) .
2n

(5.2.1)

In solving for the a” we find that v = ¢ + O(e?), which allows us to simply expand
(2z)¥ (1 — f)y about € = z = 0. It quickly becomes apparent that the function ¥ can be
written as a double power series in €/z and 2.

From Egs. (5.1.15), it is clear that for any given ¢ value for n > 0, a? ~ eal_,. If
we combine this with the 2iz" term, then we know that for n > 0, each term is led by
a term proportional to (ez)™ = 2?"(e/z)". Therefore, as a pN expansion, each n-mode of
the sum is led by a term proportional to v*", meaning that for any practical calculation,
the upper limit on the sum will be a small finite number, as all higher n-modes will be of
too high order to contribute.

Similarly for n < 0, (2iz)"a’ ~ (¢/2)™ ~ v?n. For these cases, it is important to
consider the special cases when the L, are not proportional to €. These occur for low /¢
modes and need to be handled on a case by case basis. Even in these special cases, it is
possible to write the functions as a series in €¢/z and 22

Therefore, our sum is no longer over an infinite number of terms but instead a relatively

small number of terms. The ratio of Pochhammer symbols in Eq. (5.2.1) is a ratio of

two low-order polynomials in e. For larger values of n, the polynomials grow larger, but
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we require fewer terms from their expansions due to the factors of v? provided by the 100

a’(2iz)".
Last, we consider the hypergeometric function, ; Fy (n+v+1+ie, 2n+2v,2iz(1 —¢€/z).
Using Eq. (13.1.2) from [5§],

o0
a)p
\Fi(a,b,x) = kz:%b—)k— (5.2.2)
we can rewrite the confluent hypergeometric functions in terms of a series in €/z and 22
as well.

In doing this, it is worth noting that ®* is a regular polynomial in the expansion
parameters, and we only find terms proportional to In[v] when we include (2z)”. This
feature will play a crucial role in the specialization of Hikida et al. [4] we introduce in
the next section.

In practice, it is useful to introduce a “smallness” parameter A, and make the substi-
tution z — Az, w — Aw and € — \3e. This allows us to generate a series expansion in a
single parameter, .

One natural objection to this method is that when we consider accelerated orbits

we cannot make use of Kepler’s law, which tells us that ¢/z ~ z2. To demonstrate the

potential difficulties in this scenario, we will write the particle’s accelerated velocity as

2,,2

Vgeo, Where a = 6v/v. Now, if we consider

U = Vgeo + 0v S0 that we can write v = (1+«a)?v
the case where the smaller black hole is moving in a circular orbit at » = 10°M, then
the particle’s “geodesic” speed would be vy, = 0.001. Now, let us accelerate the particle
so that it is moving at v = 100vg4, = 0.1. Any terms of order €¢/z = 2M/r would be

proportional to vgeo. On the other hand, terms proportional to v? would be proportional

to 10%*0?

Vjeo, Meaning that terms which are comparable in magnitude for geodesic orbits

may be of completely different magnitudes for accelerated orbits.

Despite this complication, we will still proceed by treating vy, as our small parameter
(or equivalently \/M/r). We do this for several reasons. First of all, the main point in
considering accelerated orbits is to disentangle the effects of the particle’s speed from
those of the spacetime curvature, so that we can gain a greater understanding of what

effects come into play for particles traveling along geodesics. Therefore, we want to
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treat terms that are of equal magnitude for geodesic orbits on the same footing as our 101

accelerated orbits.

By expanding about vy, = 0, we do introduce some potential difficulties in interpret-
ing numerical results. Consider the previous example of the particle accelerated to move
100 times faster than it would were it following a geodesic at r = 106M. If we state that
we are collecting a pN 6 term, we do not get a term of the same order as (M /r)®, as we
would in the case of geodesic orbits. Instead, we get a term of order v'* = 10**v}2,, so
that, when we analyze our answer, we can only trust terms out to roughly twelve decimal
places, which is to say that the expansion is through v'? and (M/r)?. Similarly, if we
slowed the particle down so that it moved at vge,/100, then v'* = 107**4,2 so we obtain
the same accuracy as we would expect for a geodesic orbit. So, this time, the expression
would be of order (M/r)® and v".

In short, we will consider an expansion in z and ¢, where we will think of € &~ O(z3).
We will consider terms to be of the same pN order if the magnitudes of the terms are of

the same order when v — vge,. For analyzing the accuracy of any numerical results for

accelerated particles, we

5.3 Green’s Functions

Now that we have discussed the retarded solutions to the field equations, our goal is to use
these solutions to obtain the regularized self-force on the particle. To accomplish this task,
we will first need to consider the Green’s functions themselves (in section 5.3.1), wherein
we discuss a useful splitting of the fields introduced by Hikida et al. [4], where they split
the Green’s function into two pieces, the so-called R piece and the S piece. We will treat
these two pieces separately, as the two functions have very different properties, and first
compute the R contribution to the force and then we will consider the S contribution to

the force.
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5.3.1 Green’s Function 102

Now that we have discussed the source-free solutions, we generate our Green’s function

in (T<)¢Zp(7">)

Guotm(r<,7s) = WG}’ (5.3.1)
wem\¥in> Yup
where
M
Ww[m(ﬁb;'/n; ¢Zp) = T2 (1 - 27) [(87“> - 8”’<)¢;'/n(r<)¢2p(,r>)} re=rs (532)

The solutions ¢;, and ¢, are the ingoing solution at the event horizon of the super massive
black hole and the out-going solution at infinity respectively. These can be related to the
solutions ¢% and ¢_*~! by Eq. (2.8) in [5]

O = Op + Bl

Gup = Vbl + " (5.3.3)
We now write the Green’s function as the sum of two pieces,
gémw(r<7 T>> = gfmw (T<7 T>) + g?mw(rr<7 T>), (534)

where

5 -1
R

Jomu(T<:T>) =
me( < >) (1 _ ’}/C”ﬁé’)ngw

e e (ra)er(rs) + B0, Hra)o "~ (rs)

+ ﬁ375(¢3(r<)¢c_y_1(7“>) + ¢Z(T>)¢;V_1(T<))]: (5.3.5)
and
Ginolrrs) = G (o s, (5.3.6)

For now let us focus only on the R piece of the Green’s function, as this is the piece
required for the damping force. We will save a discussion of the S piece for next Chapter.
Using our knowledge of the behavior of these solutions from section 5.2, we will demon-
strate that in order to compute the contributions for a given (finite) pN order we need
compute only a finite number of ¢ terms, as all of the other terms will be of too high a

pN order. We shall make reference to Egs. (5.1.18), (5.1.32), and (5.1.37¢) in conjunction

with Eq. (5.3.5).

ol L) fyl_i.lsl
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Once again, let us consider the high-/¢ terms so that we need not concern ourselves with 103
the behavior of the a” coefficients for the special values of n. Recall that ¢¥ = (2z)"®¥

and that ®” is regular at ¢ = 0 and z = 0. then we can rewrite Eq. (5.3.5) as

2 —1

~ 2
Jemw (1 . 7353)W€mw (1 + 0(6/27 z ))

[75(22)2u ‘|‘5CI/(2Z)_2V—2 + ﬁc!%

(5.3.7)

Now, given that 7% ~ ¢!, 8% ~ ™1 Wy ~ (1 + O(6?))/w, and v = £ + O(€?), we

can write
. —(14+ O(€¢/z, 2* 22)26+1 €\ 2¢+1
gfmw ~ ( T(l _( 6/26) )) [( )E + (5) + 6% (1 + O(E/Z,ZQ)).

(5.3.8)

For large ¢, the first term in the brackets will dominate. By using z ~ v, it is clear that
gfmw ~ (v?)*~L. Therefore, to achieve N pN orders of accuracy, it is necessary to compute
N + 1 ¢-modes of gfmw.

For practical calculations, this indicates that the contributions for the R piece of the

field fall off faster than any power of £. ©

5.4 Solving for the retarded field.

5.4.1 General ¢ Solutions

We will now solve for ® and ®*~! for general £. These expressions will not necessarily
hold for small ¢. If we want to write an expression that is valid to pN order ‘N’ then we
need to compute the modes ¢ = 0 through ¢ = N + 1 explicitly. The rest of the modes
are correctly described by the general ¢ expression. We will borrow the shorthand from
Hikida et al. [5] and say that this expression is valid for ¢ > pN + 1.

To understand why this expression is limited to ¢ > pN + 1, recall Eq. (5.1.16), where
we see that each of the left movers (and thus each of the a? for n < 0) break from

the typical behavior for certain values of n. So, for example, with ¢ = 10, we can safely

6While it is probably true that one can show that the fields from gfmw are in fact C'*° in general, we

will make the slightly weaker claim that for finite pN order the approximations are C'*.
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generate a” ;, before we encounter the irregular behavior, where as for ¢ = 0, the irregular 104

behavior appears already at a” ;.
We solve for the a? and use the three term recurrence relation for n = 0 to solve for

v. If we define

v=1/~+ Z Vo€, (5.4.1)
k=1

then we can write
—152 — 150 + 11

= 4.2
T D20+ 3)20— 1)’ (542)
L ~1
TR0+ 1)(20 4+ 1)3](20 + 3)(20 — 1)JP[(2¢ + 5) (20 — 3)]
x (3240 + 8733( — 7389202 — 99553 + 278260¢* + 64365(°
— 382305/° — 235200¢7 + 798004 + 9240007 + 18480¢'7). (5.4.3)

For the work we report, on these two corrections are sufficient, but we give the next

correction here as well,

([(ze +5)(20 — 3)]2[(2¢ + 7)(2¢ — 5)]) B

16(C2(0 + 1)2(€ — 1)(€+ 2)(20 + 1)°[(2¢ + 3) (20 — D)
% (112266000 + 148424400¢ — 24359580902 — 6168553647(3

+354780315260* 4 36389459295¢° — 196940982399¢° — 140591485296/
+5537703895470° + 435348291492/° — 815344024118¢°
—859441621500¢' 4 504925684186/'% + 867198262392¢"3
+236762784720* — 3930243609600 — 1439636499840
+59163616512¢0'7 + 4711189683208 4 47509862400

—3550170624¢* — 1150076928¢*" — 104552448¢). (5.4.4)

The Wronskian, Wy, is

ol LAl Zyl_i.lbl
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105

W, = 2+1 . (131 =201+ 0)(L75+ 8L(L + O)(—17+20(1 + 0)))) ,

2w 8w(20 + 1)[(20 + 3)(20 — 1)]2 ‘

64

T 32m( 1 1220 + 1P[20 + 3)20 — D20 1 5) (20 —3)°
% {201600 — £(1 + £)(—1205280 + £(1 + £)(4159782

+0(1 + £)[16861932 + (1 + €)(—T78712065 + 2¢(1 + £) (61438379
F40(1 4 €)[—~11436715 + 8((1 + £)(494407 + 8¢(1 + £)(—9162

+0(1 +0)(343 +200(14+0))))))}

+0(€%). (5.4.5)

We will write the solutions ®¥ as

o M 2n—22m
o/t =N onl (—) (5.4.6)

r

where the pN order is described by n and the power of w is given by m. With these

definitions, and recalling that z = wr and € = 2Mw. Thus, to 6 pN order,

M wir? ?—-50—-10 (M
o= 10 + =
ro 22043)  2(20+3)(+1) \ r

+% <¥>2 B €(€3z22)£41—)22)2 <¥>3

G182 4170 —4 (M\°,
T 20—y (7) (wr)
303 — 2702 — 1420 — 136 M A
T24(0+ 1)(f+2)(20 + 3)(20 + 5) ( ) (wr)
(wr)®
A8(20 + 3) (20 + 5) (20 + 7)

2 (WT)4
) wr) + Sar T 3y +5)

r

2n—2m

6 n M 5
+ Z Z CY g (wr)?™ <7> + 7pN,

n=4 m=0

(5.4.7)
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where the 4th pN terms are given by 106

00— 1)(0 — 2)%( — 3)?

Cio 6(20 —3)(20—1)
v - 20° — 61(° + 530" 4 386(° — 286(> — 4( + 24
b2 60(20 +1)(20 — 1)2 ’
Ciy = :
2404+ 1)(€+2)(20 — 1)2(20 + 1) (20 + 3)3(2( + 5)
X <48€9 — 11520% — 704007 — 8212(° + 10953(°
+157450* — 10867¢° — 7749(% 4 69300" — 768),
o 50* — 606% — 625(* — 15480 — 1108
O 24000+ 1) (€ +2)(0+3)(20 + 3)(20 + 5) (20 + 7))
1
Cis = (5.4.8)

384(20 4 3)(20 +5)(20 +7)(20 4+ 9)°
and the 5th pN terms are

00— 1)(0 = 2)(€ — 3)2(¢ — 4)?
5,0 B 30(2¢ — 3)(2¢ — 1)
) 1
527 120(20 — 3)(20 — 1)2(20 + 1)(20 + 3)

X <4£9 — 1880 + 483¢7 + 3127/° — 67950° — 4211¢*

+132080° — 4404¢% — 936/ + 432)
, 1
AT 2400+ 1)2(20 — 1)2(20 + 1)(20 4 3)3(2¢ + 5)
(160" — 768¢" — 67207 + 31236¢° + 169443¢7 + 4058675 + 4535214° +

67017¢* — 278316¢% — 115776¢ + 59568¢ + 6480),
1

Cio = T 240(0+ 1)(€+2)(0 +3)(20 — 1)2(20 4 1) (20 + 3)3(20 + 5)2(20 + 7)
x (160€'" — 520000 — 53840¢° — T4872(® + 715258(7 4 3065539¢°
+41733000° + 569492¢* — 2743668¢% — 883399¢% + 690870/ 4 37080),

o 3505 — 490¢* — 885503 — 407540 — 73032¢ — 43968

58 T

13440(0 4 1)(£ 4 2)(€ + 3) (€ + 4) (2 + 3)(20 + 5) (20 + T) (20 + 9)’
. 1
Csio = 3840(20 4 3)(20 +5)(20 + 7)(20 + 9) (20 + 11) (54.9)

oLl Zyl_i.lbl
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and the 6th pN terms are 107

00 —1)(0 —2)(£ — 3)%(£ — 4)*(¢ — 5)?
90(2¢ — 5)(2¢ — 3)(2¢ — 1) ’
1
60£(¢ — 1)(20 — 3)(2¢ — 1)2(2¢ 4 1)(2¢ + 3)
X (401 — 27207 4 177507 + 37200° — 40838(7 + 70264/

1%
06,0

v _
Ceo =

1289550° — 167960¢* + 126504¢% — 14232¢% — 12000¢ 4 2880),
1

14402(20 — 3)2(20 — 1)4(2¢ + 1)(2¢ + 3)

X (480" — 42240™ + 640640™ — 959400 — 379631¢°

14 _
06,4 =

+791789¢" + 69887145 — 2756237¢° + 22239360+

—3214440% — 418608(* + 215136¢ — 31104),

1
T200(0 + 1)2(0 + 2)2(€ + 3)(20 — 1)2(20 4+ 1)(20 4+ 3)3(20 4+ 5)2(20 4+ 7)
x (1600 — 100004 — 51120£" + 10595920'2 + 142225700

485301127010 + 323138174¢° 4 837487174¢% 4+ 1451995896¢7
+1484991533¢° 4+ 500977876/° — 576841506¢* — 577239396¢3

—27215040¢% + 99958320¢ + 6804000),
[(20 4 1)(20 + 3)3(20 4 5)2(20 + 7)2(2 + 9)]
40320(0 4 1) (€ +2)(£ + 3) (£ + 4) (2 — 1)2
X (+67200" — 2620800 + —4564560¢'" — 12655776¢'°

v —
06,8 =

+155479612¢° + 141172250008 + 505712954907 + 90946314565
+6927573308¢° — 15352617100* — 5056201229¢% — 101151567042

+1028051640¢ 4 110557440),

(204 3)(20 4 5)(20 + 7) (20 + 9) (20 + 11)] !
80640(¢ + 1)(€ +2)(€ +3)(L +4) (L + 5)

X <21126 — 3150° — 9205¢* — 67921¢°

v _
06,10 =

—219992¢% — 323836/ — 172976) ,

1
40680(2¢ + 3)(20 4 5)(20 + 7)(20 +9)(2¢ + 11)(2¢ + 13)

Cg,12 =
(5.4.10)

Comparing with Hikida et al. [4], we agree with all of the terms they reported (the

first line of Eq. (5.4.7)). All of the other terms are new.
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To get 7"~ we can simply make the substitution ¢ <+ —¢ — 1. All of these values 108

assume that the denominators of o/, v/, and the leading order term of 3} do not vanish.
Therefore, for lower values of ¢ < 7, one needs to solve for the ®” and ®*~!, directly for

each value of £. 7

5.5 The Damping force

A charged particle moving through curved spacetime interacts with its own field. The
resulting force has both conservative and non-conservative pieces. We only consider the
non-conservative in this chapter, and devote the next Chapter to the computation of the
conservative self-force.

As the non-conservative part of the self-force is purely a damping force, it acts directly
against the motion of the particle. For circular orbits, this is most convenient because
this damping force is just the component of the force in the ¢ direction. Therefore, we

can write

2
.q
Fy=i > mgemme(ro, 70)| Yem (7/2,0)]%. (5.5.1)

lm
Now, we will break g;,, no into the R and S pieces. However, we can immediately
see that F f = 0 because gf’mymﬂ(r@ r~) is a real function that is even in w, which in turn
tells us that when we perform the appropriate sum in Eq. (5.5.2), each term will be of
the form m?" ™Y}, (7/2.0)|?, which vanishes when summed over m. This allows us to

write

2
- g )
Fy=Ff= i > mglt ma(ro, 10) | Yem (7/2,0) . (5.5.2)
4m

Using the knowledge that u* = (1—2M /r—(Qr)?)~Y2, we can write down the damping

"By examining Eq. (5.4.7) one can already see evidence of this behavior. In the term proportional to
Mw?*, when ¢ — —¢ — 1, the denominator becomes to £(¢ — 1)(2¢ — 1)(2¢ — 3), which obviously vanishes
for £ =0 and ¢ = 1. A comparison with the value from the explicit terms shows that this does not agree

with that found for ¢ = 2 but it does for ¢ > 3.
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force as
202 2002 40y4
q°Q 7682 51,2 9 2T - 91
F, = — — MrQ* ) + | —Mr:|Q
¢ 47rd ( 3 ) + ( 6 " 3 Tl
6006 1130 M 5(MQ)? 19773 1QP M
(35;21 B TOQ ( 6 ) )+( Wroé | _27TTO‘Q|3 2)

76 Ar® 46537\  MPQ2 35rSQF
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(5.5.3)

152
+1—5(’7 + 111[297“0])>> + TpN

For geodesic orbits, this force is much simpler. Using Kepler’s law, we write M/r =

(Qr)? = v?%, where v is the orbital velocity.

vt [1 v? 2@ 7Tt 9m|od|

FgCO _ -
¢ 4mr2 |3 6 3 24 5
N 10121 + 160072 — 6080(~y + 111[21)])”6 _ 37617[v|
3600 420
| 489584460 + 285376007 — 90603520 In[2] — 46511360( + In[20])
7056000
3518947 + 383040(v + In[20]) | ,
- N 5.4
i 113400 Il T (5:5.4)

To arrive at Egs. (5.5.3) and (5.5.4) it is only necessary to use ¢ = 0 through ¢ = 7.

All higher ¢ terms are of too high a pN order to contribute.
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Chapter 6

The Conservative Self-Force

In computing the conservative self-force, we must renormalize our fields by subtracting
the contributions from the singular field. In doing this, we will need to focus on many of
the subtleties that we were able to push aside before: To this point we have only developed
the background for regularization, but have yet to perform an actual regularization.

In this Chapter, we will demonstrate some remarkable results, results which could ease
the computational burden of self-force calculations considerably. This benefit was noted
by Hikida et al. [4], and indeed was the primary focus of their papers. Unfortunately,
it seems that these methods have either been ignored or are unknown to many in the

self-force field.

6.1 The S and R fields and Detweiler and Whiting’s S and R
fields

The labeling chosen by Hikida et al. [4], calling the solution to the source-free field
equations the R field and to call the solution to the sourced equations the S field, is an
intentional comparison to the R and S fields of Detweiler and Whiting [36]. As we are
going to regularize these fields now, it is important to understand the differences between
these four fields.

As discussed in chapters 2 and 3, the DW singular field, ¢°, is chosen so that it can

be subtracted straight from the retarded field, ¢™ so that the resulting field, ¢% is a
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smooth, C'°* function in the normal neighborhood. To define the S and R fields beyond 111
the normal neighborhood, we would need to choose a manner of extending these fields to
the rest of the spacetime, and, importantly, choose an extension which does not change
the self-force renormalization’.

The S and R fields have some similar properties to the S and R fields respectively,
but they are different in a few important ways. First of all, the S and R fields are both
defined globally, so there is no need to consider extending them to a certain region. The
function gbR (restricted to a finite pN order) is C°° in its entire domain, just as the ¢% field
is in its (considerably smaller) domain, as both functions are solutions to the source-free
field equations.

Similarly, ¢§ and ¢° are solutions to the same sourced field equations with S defined
globally, not locally. However, ¢§ is not a globally defined singular field. When one sub-
tracts these fields from each other, the resulting ¢§_S = 9255 — ¢° field has a nonvanishing

contribution to the self-force. The renormalized field is given by
o = 6"+ (67— ¢°). (6.1.1)

6.2 The R Contribution to the Force
Consider the equation for the radial force,

2
Fret = % S 0 gmme(r, )| Yem(m/2,0)2. (6.2.1)
lm

r=rg
Unlike the ¢ component of the force, the radial component will have contributions from
both the R and S fields. We can understand this simply by recalling that the real parts of
gfmyw and gfvm,w are both even functions of w so when w — m{) we will have even powers
of m in the summand for both fields, which means that both will have a non-vanishing
contribution.

As we discussed in the previous Chapter, to achieve accuracy to N pN order it is
necessary to compute the £ =0 to ¢ = N + 1. For all £ > N + 1, the expressions are too

high in pN order. In this way, we can see that the R field falls off faster than any power

'which is to say, we choose a smooth extension.
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of ¢ (for a given pN order), and therefore it does not need renormalization. We can gain 112

some insight into this mathematical split by examining the first handful of pN orders

FE 5302 2 14177504 89(rQ2)2  4M
£ { oM ?} { 3002M 133 7r 1
. {9804331#96 ~136153(rQ)* . 5rMO? 9M2}
14205464 M 42028 38 r2
. {10150833230577"998 1243509067 (r(2)° . 3949020M%  482M°
1108452355920 M 127849176 5054 13373
() (43348880(~ J; 21151[121r6§é](]) 281678493} +pNL (6.2.2)

Just glancing at this equation is enough to recognize that this cannot be the physical
force. First of all, there are terms of order M ~!, so the flat spacetime limit is clearly
incorrect. Furthermore, the static particle limit also fails, since it has been established
([59]) that there is no self-force on a static scalar charge in Schwarzschild spacetime.
This tells us that each of these terms must appear with opposite sign in the force FTS -9,
Looking ahead to the results, it turns out that none of the terms below 3pN survive. In

order to extract real physical insight, we need to consider the full, renormalized self-force

6.3 The Large ¢ Behavior of the S and S fields

The Green’s function ggm,w(r<,r>) is a solution to the sourced field equations and is
therefore singular at the position of the particle. As a result, the harmonic decomposition
of FTS will not fall off faster than any power of £ at the particle, but it will in fact diverge,
requiring the computation of a large number of £ modes. In chapters 1-4, the focus has
been entirely on the singular field, but now that we are actually renormalizing the force,

there are a few subtleties that we need to discuss.

6.3.1 The High-¢ Expansion of F

As we stated in chapters 2 and 3, the £ modes of the renormalized field can, in principle,
be written such that they fall off faster than any power of /. In practice, however, F (fz

does not fall off this quickly due to the presence of the DE™ terms. Recall Eq. (3.7.4),
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reproduced below: 113

4jD2j
S a
F’QI—AQL—FBa#—E r

: (6.3.1)
T [(26+ 1+ 26)(20 + 1 — 2k)]

As we subtract away successive D% terms, we make the expression for the modes of
the renormalized self-force fall off faster with each term subtracted, without changing the
value of the force. If we knew all of these parameters, then the difference Fgeg -F (f , would
indeed fall off faster than any power in ¢. In practice, however, we can only approximate
F ,fg, because we actually use an approximation for the singular field, we can therefore
only approximate F%.

Because of this difficulty, Heffernan et al. [31] computed several of these parameters,

) gave a relative error of only 1079, and

noting how at ¢,,,. = 50 the inclusion of D((f
including yet higher order parameters sees further improvement (by including the first
three parameters, the relative error was 10717).

By following the splitting of the field introduced by Hikida et al. [4], we found an
expression for all of the £ modes. By finding the coefficient of the terms that are linear in
¢ (the A term) and independent of ¢ (the B term), we can remove these terms from the
expression and then analytically perform the sum from ¢ = 0 to co. On the other hand,
because we have the analytic expression for the S field, we can actually pick out the pN

)

expansion of the D without making reference to the Hadamard expansions at all.?

6.3.2 Generating the S Field for Large /

The mode sum regularization involves a sum over m. In our case, we can use the (cor-

rected)? relationship from Hikida et al. [4] given in their Egs. (3.7-3.8)

14

S Yo (7/2,6)2 = Ay (0), (6.3.2)

m=—/{

2 This method is actually the analytical version of the numerical techniques used by Shah et al.
[3][50]. In his work, Shah computes many ¢ modes of the retarded field (84 modes in [50]) numerically,
and, knowing that the renormalized force falls off faster than any power of ¢, plotted the results and
determined successive regularization parameters by fitting for the ¢ dependence. It should also be noted
that if the D term (finite remainder) was non-zero, then it would be necessary to use the local expansions

to determine its value.

3This correction was found by Eric Van Oeveren
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where the A;(¢) can be found by performing a Taylor series about z = 0 of the following 114

expression,

(02 20+ 1
> n(0)z R (1/2,=6;1;1 — ™), (6.3.3)

(2n)! 47

n=0

and equating the coefficients for each order of 22. We also note that the sum over m of
m2 Yy (7/2, ¢)|? will vanish.

Following Hikida [4], we return to the Green’s function and rewrite it as
Tom(ra,7>) ZGemk re,Ts). (6.3.4)
Because of this, we can perform the inverse Fourier transform using
/dww%e_iw(t_t/) = 27 (10 §(t — 1), (6.3.5)

which means we can write the force F W n the time domain as

Ff:z(t, r,0,0) = ¢* ig Va Z(i@t)%utG&mk(r, 2" (1) Yo (0, )Y (2(t), 2°(1)).  (6.3.6)
m.k
Here we have replaced the notation used throughout most of this document with the
argument of the Green’s function being (r,7’) instead of (r-,r~). This is the only place
where we will use the notation (r,r’).

In the case of circular orbits, the 9?* can just be replaced by (m)?* but it is worth
pausing here to consider the implications of Hikida’s split. Using this method, it will be
possible to renormalize analytically for an arbitrary trajectory in the time domain to a
given pN order. By renormalizing this way, the rest of the field is C°°, meaning we would
only need to calculate a limited number of ¢ values to get the desired pN order.

First, we return to Eqs (5.4.5-5.4.10), and, using the definitions for the Wron-
skian, Wynw, oY, and ¢ 77! we write the Green’s function gfmw(r<, rs) =
Wi 02 (r<) o ().

Second, we take the gradient of this expression and evaluate it at r- = r~ = rq,
finding the values with the derivatives evaluated both above and below the particle (i.e.

we compute the derivatives 0,_ and 0,.). Third, we make the substitution w — m2, and

use Eq. (6.3.2) to sum over the m-modes.
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This results in two quantities ng> = O ®% and FS,_ = Oy <I>g, which we use to 11?

ra<

define in the antisymmetric and symmetric parts of the S force respectively,

~ 1 ~ ~
Foﬁe- = 5 (F(f,é> - Foi£<>
~ 1 ~ ~
Foow=35 (Ff,e> + Fg?,k) : (6.3.7)
The antisymmetric piece is
2,,t 6 n
S cut(20+1) 2M .
Foyo = - O(M
rié= 82 ; r +O(M/r)
2
(204 1)
- 87rut7’2 1— 2M (638)

which is precisely what we expect from Eq. (3.4.42) for the A, term, up to the factor of
47, which arises due to the different conventions used in the derivation used in Chapter
3, and those we adopted in chapters 5 and 6.

Turning to F 5 o>, we know that this term must be dominated by a term that is
independent of ¢, i.e. the B, term. Thus, we can determine the B, term simply by

taking the limit as ¢ — oo, which leads to

2 2 4 2
o q ()2 2M o7(Qr) 9M
lim £, = — 1
zggo it 87Tr2ut[ * < 4 + r * 64 + 2r2
125 A5M 15012 M3
2t — 2 o) Qr)? + 10—
( 256 (82r) 32r ()" + 82 ({r)” + 10 r3 )
—8575(Qr)®  1T5M, o 315M?, ., 35M%,
_ Qr)s — Q 0
( 16384 oar ) = g ()T A =5 (On)
175M4 35721 33075M AT25 M
1 ——(Qr)lo——(Qr)S——2 (QT)G
8r 65536 8192r 5121
945 M4 18905 5S69TL(Qr)'2 43659M
Q 2 _ _ Q 10
gorn () T ) ( 1048576 s192, (W)
606375M2 . 5TTSMP o 10395M*  693M°
7 — Or)?
someerz )T opgs () o s ()
1617 M5

This is the B, term to 6 pN orders. Now that we have identified the A, and B, terms,
(notice that we did so purely by analyzing the solution to the retarded field, only making

reference to Eqs. (3.4.42) and (3.4.25) to check our solutions), we can write Ff[s by
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subtracting Egs. (6.3.8) and (6.3.9) from the expression for F,:?g. To ease writing, we will 116
use the notation

{m} =[(20+1+2m)(20+ 1 —2m)], (6.3.10)

which allows us to write,
@ | 3(Qr)? . 9(Qr)+ 1844(¢ +1) — 135 B 3M?
8rr2 | 4{1} 64 {1}{2} 2r2{1}
(25(Qr)6 7875 + 40(¢ + 1)(—3247 + 9004(¢ + 1))

S—s
Fr,ﬁ -

256 {1H{2}{3}
BM(Qr)* 618 + (¢ + 1)(—901 + 72(£ + 1))
32r (¢ —1)(0+2){1}{2}
() M? 135+ 40(£ + 1)(—89 +48((£ + 1)) 6M°
M (IO rs{l}) T
(6.3.11)

We compute this out to 6 pN orders, but due to the length of the expressions, we will
not include them here, as three pN orders are enough to demonstrate the procedure. This
also raises a few apparent paradoxes, which we will address in rising order of complexity.

When we subtract only the A, and B, terms from the mode-sum of the retarded field,
we do not recover a C'*° field, and so the resulting expression for the modes do not fall off
faster than any power in £. But this leads to the next objection: if we the last two lines of
Eq. (6.3.11) then we see two terms (the MQ* and M?*Q? terms) whose denominators are
not of the form of a vanishing sum. After all, our higher-order regularization parameters
are supposed to be of the form Const([Tn_,{k} .

We can rewrite anything of the form

al(t+1)+b = %(y@+40+%>
= % ((452 + 40+ (14 2m)(1 — 2m)) + %b — (14 2m)(1 - 2m))
_ %O%+1+%m%+1—%w+%—u+%mu—mm>
- Zemyﬁ%—a+%ma—mm) (6.3.12)
Thus

1840(0 4+ 1) — 135 = 46{2} — 135 — 46(—15)

—  46{2} + 555; (6.3.13)
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and 117

O(Qr)* 1840(¢ +1) — 135 9(Qr)* 46{2} + 555
64 {112} 6 {142}

()t (46 555
- S (o rmm) e

Now, we can see that this is clearly the sum of a D and DW.

Now, using this technique every term in Eq. (6.3.11) can be rewritten in the form of a
constant divided by an even polynomial in ¢. By judiciously choosing which [m] we use,
we can write all of the terms that are part of vanishing sums so that they have the form
of DL, {k}).

The only terms that cannot be written this way (at this order) are the 3pN terms of
order M and M?. We will focus on the second term first.

The M2, 3pN term from F5~5 will contain a term of the form ({0}{1}{2})~2, which
falls off as =%, but does not sum to zero. * Since we know there is no D,, term, this must
be part of the actual force. On the other hand, since this falls off as a finite power in ¢,
it cannot be part of the force.

This apparent contradiction is solved by realizing that this term must be a sum of a
piece that falls off faster than any power and contributes to the force, and a piece that
falls off as a finite power of ¢ that is an element of a vanishing sum. To demonstrate how

this happens, consider the simpler case of a term that goes as (2¢ + 1)2.

1 41(1/4) 4 —(1/4)4

QU+12 (20+3)20—1) @+1220+3)20—1)] {01}’

(6.3.15)

and so the D@ term from (2¢ + 1)72 is equal to 1/4. Now, clearly the D™ term is -1/4.

Subtracting this term off gives us
(1)
{03{1}{2}’

so D® = 1. Continuing this procedure gives us D® = —9, D10 = 144, D2 = 3600,

4in fact, it sums to 372/256. These terms are one of the sources for the 7% terms that appear in our

final answer.
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and D) = 129600. After subtracting all of these terms we are left with 118

—6350400(4%)
{OHIH2H3H{4H{BH6HT}

Therefore, for any finite power of ¢, we can continue this procedure. Summing over

(6.3.16)

the remainder still gives 72/8, so we have not changed the result of the summation.
Furthermore, if we add the £ = 0 and ¢ = 1 values of the expression in Eq. (6.3.16), we
recover a relative error of 0.08. Summing the first seven values (¢ = 0 through ¢ = 6), we
recover a relative error of 3.7 x 107°.

We will use similar tricks with the order M term. Notice that ({ —n)({ + 1+ n) =
((l+1)—n(n+1), and

1 B 4
(l—n)(l+1+n) (20+1+42m)(20+1—2m)

1+ 4[n(n+1) —m?
(l—n)l+1+n)20+1+2m)(20+1—2m)

(6.3.17)

Notice that, even though the (¢ — 1)(¢ + 2) denominator of the order M term, blows up
at £ = 1 (which is acceptable for the retarded field since at 3pN, we expect this term to
be valid only for ¢ > 4), we can still use it to identify the regularization parameters.

Therefore, we can renormalize these terms as well, following a similar procedure to
that of the M? term.

So, even though Eq. (6.3.11) may not appear to have the exact form we were hoping
for, it can be written so that, for a given n,,,, the S field can be split into terms that
either match the form of the singular field, allowing us to identify the A,, B, and the
D® through D"me) terms which we recognize as the singular field, or into terms that
fall of faster than ¢+ which will have terms that contribute to the force.

We do not need to find these higher order regularization parameters, as we can perform

the sum over all /.

6.3.3 The Value of the S — S Field

By using the explicit values for £ = 0 through ¢ = 7 and then using the general formula

for / = 8 to infinity we can perform the full renormalization.
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We find the F5~5 force to be 119

F5-S 5(r 14177504 89(rQ2)?  4M
19M 3002M 133 Tr

14205464 M 42028 38r Tr?

[9804331 796 136153(Qr)4+5((2r)2M 9M2}
[101508332305798 rd  1243509067(Qr)°
8

1108452355920 M 127849176
66709919(Qr)* M N (Qr)2Mm? (3949 B W) B 482M3]
97534980 72 5054 64 13373
+pN4. (6.3.18)

We can compare this to the R force from eq. (6.2.2)
FE 51322 . 2} [141%594 89(r(2)2 4M}
% | 19M 7 3002M 133 r
[9804331r7Q°  136153(rQ2)* N 5rMQ* 9M2}
| 14205464 M 42028 38 7r?
[1015083323057r°0Q8 _ 1243509067 (r2)° n 394902 M* _ 482M3
| 1108452355920 127849176 5054 13373

4 93892831
(MO [ 2 (y + Inf2rQ)) — 22072000 N4.
(Mr >(3 (7 + Inf2rQ2]) 10837220)} tp

As we expect, the pN 0, 1, and 2 terms cancel each other exactly. Adding these together,

and focusing on the 3pN term only, we find

2 2 2
R_ 4T (MAT, (2 4 M
F! = 3 [64 (r) v +( 5 3(7+ln(211)) —v

By just focusing on the first non-vanishing order, we can glean some useful information

+pN4.  (6.3.19)

regarding the splitting of the fields. Notice that the M° and the v° terms from the S
and R expressions cancel each other out exactly. This could be predicted, since we know
that the conservative self-force vanishes both in flat spacetime and in Kerr spacetime for
a static scalar charge.

Also notice how ff ~9 does actually contribute to the force, confirming that ff £ f3.
Another key feature to notice is that the In[2v] and 7 terms come straight from the fré
expression (at higher orders there are also polygamma terms ¢(n)(z), which originate
from the F® expression). This is to be expected— the ®% field contains all of the I'[r]
functions, the derivatives of which are responsible for the appearance of the vs and 1(™s.

Now we can write the full expression for the conservative self-force.

www.manaraa.com



6.4 The Conservative Self-Force 120

To sixth post Newtonian order, we find

FPf = 472;{ [76—7;2 <¥>2UZ + <—§ - %(’y—kln(%))) g#]
(e (0 o (15 43 (4)
n (@ e Py 1n(2v))> Mv@'] + [—?f—; (¥>z [of?

r

1172\ /M\* 19 14172 2 M\?
4 S P U (it In(2 =) ot
+[(+256>(r>”+( 9 1024 3(7+n(“))>(r>”
517 152972 512 M\? 54647

—_

15 T o0as 15 1260
1216 9187 119 M

L |67 (M 3|v|5_17837r M 2Iv|7
45 r 315 r

N %_23n2+gln 2M MY’ 2, _ﬂ+52217r2
45 256 | 3 r r )’ 18 " 2048

7658574 M\* 4 6239 13846972 1984
vt + - In(2)

524288 ) \ 500 30720 45

r

49207 152 2 8 M\®
&5 (v +In(2v)) + 15 (v + In(20)) +3¢ (2) B
803219 42395172 1408 6561
- In(2) + ——1
( 2520 " asior2 g ) gy )
5131 MY 7319647 35920
2 (v 4+ In(2 T - In(2
gy (v nd ”)>)(r) v +(68040 159 M%)
8019 161 M
—f—mln(?») N T(’y+ln(2v))>7v10} —|—pN6.5}, (6.4.1)

In the geodesic limit, we find

ol L) fyl_i.lsl
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20 22 4 4 297% 12
pr= 27 [ ———-(v+In2v)) ) + 00 + on 81112
r,geo

4rr2 )\ 64 9 3 45 ' 1024 15

14 , 387, . (1511 31
_?(’Y‘FIH[QU]))U —4—5|v| + (TO%-?W—HH[%])

13352 320 2187In[3]\ , 1397|v —41117659

+ — 2| - —— |v" — +

2048 7 70 35 212625

152 233276972 765857 69199y 78799

—_= In[20])? — In[2
+ o5 (2] ey T Boaoss T o0 T oo M2V
34263 95174 8 .
T 3] — " 1n[2] + —p@[2] 0" 7 4.2

v e np] - 2 iz + S0l o +o<v>} (6.42)

While Eq. (6.4.1) is far from pleasing to the eye, we can understand the value of this
equation when we look at the far simpler Eq. (6.4.2). Even keeping only terms out to
v!2, we can see that the expressions are beginning to become very unwieldy. In order
to produce an expression of sufficient accuracy to evolve an orbit, it will be necessary to
keep many more terms, terms which will grow more and more complicated as we increase
our accuracy requirements.

In these circumstances, it is useful to be able to take limits of the expression to recover
simpler, known results. Using Eq. (6.4.2), we can only take the limit as v — 0. When
we do so, we would also set M to zero, so that while we can take a limit, it simplifies to
considering the self-force on a static charge in flat spacetime.

Starting from Eq. (6.4.1), it is possible to take the limit as v — 0 while holding M
fixed, or the limit as M — 0 while holding v fixed. This allows us to check that the result
for circular motion agrees with the results for a static particle in Schwarzschild, and for
a particle moving on a circular orbit in flat space-time. °
The first two terms from Eq. (6.4.2) agree with Hikida et al. [5], but the rest of the

terms are new®, and so to compare them we will consider a few important limits from

numerical studies.

5The fact that these limits give the same value as the self-force on a static charge in flat spacetime,
namely F® = 0, means that we can still gain confidence in our result because it also agrees with two

scenarios that are both more complicated than the static charge in flat spacetime.
6Hikida et al. needed to compute these terms numerically, but they did not write down their explicit

forms.
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6.4.1 Comparisons with Literature 122

We will compare with two numerical studies, namely that of Detweiler, Messerataki and
Whiting [48], who analyzed circular orbits at » = 100, and with that of Warburton et
al. [45], who analyzed the self-force for several different values of the radius. We choose
to compare with » = 50M, where one would imagine that v% correction terms will be

sufficient to recover several digits of accuracy.

Table 1: Converging to DMW (r = 10M)

Power of v FR Relative Difference
O 6.98505 x 107¢ -0.4932
V8 1.42163 x 107 0.0313
v? 1.33773 x 1075 -0.0295
vt0 1.50205 x 1075 0.0897
vt 1.46263 x 107 0.0611
v'? 1.37594 x 1075 -0.0018

DMW 1.378448171 x 1075 —

Table 1: We demonstrate how we approach the results from DMW for r = 10M, ¢* = 4,
M = 1. Tt is interesting to note how the results from O(v?) are more accurate than either

the O(v'%) and O(v'!) expressions.

For r = 50M, we can compare with the a = 0 values from Table IIT of Warburton et
al. [45].

The agreement we find with these two studies is promising in the sense that we are
converging to the expected values and the convergence is at the anticipated rates (very
quickly at r = 50M and more slowly for r = 10M). The work by DMW required the
computation of 41 explicit f-modes, followed by the use of an approximation method for
higher ¢ to speed convergence. Warburton et al., used 56 /-modes.

In the method we have used, it is perhaps correct to say that we computed either

9 ¢-modes, or all of them, in the sense that we compute 8 modes explicitly (¢ = 0
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Table 2: Converging to Warburton (R = 50M)

Power of v FE Relative Difference
0 5.66868 x 1077 -0.10683
v® 6.37183 x 1077 3.95878 x 1073
v? 6.34781 x 1072 1.75506 x 10~*
v!? 6.35288 x 1077 9.7452 x 10~*
ot 6.35063 x 1072 6.18665 x 1074
v!? 6.34664 x 1077  —8.9682 x 10~°

Warburton — 6.3467 x 107 -

Table 2: We demonstrate how we approach the results from Warburton et al. for » = 50M,
2 =4m, M = 1. It is interesting to note how once again the results from O(v?) are more
accurate than either the O(v'®) and O(v'!) expressions. Also note that the relative

difference for v'? is meaningless, since Warburton only included 5 significant figures.

through ¢ = 7) and then we compute the expression for general £. While it is unarguably
more computationally expensive to compute a general ¢ term then it is to compute an
individual term numerically, we only need to compute one term for all £ above our desired
pN accuracy and we can perform the sum over m analytically and do not need to compute
each m mode separately.

Since we regularize analytically, we do not need to do any fitting of the D) terms
required in numerical analysis. If the analytic summation of the D terms becomes
awkward, we can pick these terms out by eye— After subtracting the A, and B, terms
from F 5 , we can multiply the resulting term by 4/2, and take the limit as ¢ — oo. This
result will be the D term. This process can be repeated ad infinitum until we find a

term that sums easily.

SR Zyl_i.lsl
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In this dissertation, we have explored the details of self-force regularization for accelerated
particles. Despite the fact that there are unlikely to be many systems of astrophysical
interest that experience significant acceleration (at zeroth order in the mass ratio), consid-
ering accelerated motion can lead to significant insights. A single glance at an expression
like that in Eq. (6.4.2) should be enough to convince the reader that as we pursue higher
pN orders where the expressions will become even messier, it will be useful to have a
number of limiting scenarios we can check explicitly.

Furthermore, the expressions for an accelerated charge in the frequency domain are
identical to those for elliptic orbits so that as we advance to study these more complicated
orbits, we can be confident in our frequency domain terms as we have a ready-made
check at each point of the calculation, wherein we can compare our equations to the
corresponding ones in three different limiting cases as a sort of sanity check.

In addition, we have helped pave the way for answering whether the self-force might act
as a cosmic censor, providing the necessary tools to renormalize the self-force for massive,
charged particles moving in electrovac. This same work has laid the foundations for

extending the renormalization of the gravitational self-force beyond vacuum spacetimes.
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